Lastline Analyst APl Documentation
Release 2.0

Lastline, Inc.

Oct 27, 2021

CONTENTS

1 Overview 1
1.1 Supported Artifacts 1
1.2 Getting Started L. e e e e e e e e e e e e 12
1.3 APICONCEPLS . . . v v v v o e et e e e e e e 13
14 Workflow o e 13
1.5 Handlingof Containers o v i i i e e e e e e e e e e e 13
2 API Reference 15
2.1 Authentication L e e e e e e e e 15
2.2 Response Format L L e e e e e e e 15
23 Methods L e 16
2.4 Error Codes o . it e e e e e e e e e e 45
2.5 Submission Metadata e e e e e e e e e e e 47
2.6 Web-Portal Integration i e e e e e e e e e e e e e 47
3 Analysis Results 49
3.1 Analysis Report Format e 51
3.2 Report Format e 52
3.3 Report Format ll-int-win 0 e e e e e e e e e e e e e e e e 57
3.4 Report Format [l-int-osx e e e 75
3.5 Report Format ll-win-timeline-based oo 79
3.6 PE Statsinformation e e e e e e e e e e e 81
3.7 PEResource Stats information e e e 81
3.8 Report Format ll-osx-timeline-based e e e 91
3.9 Report Format ll-int-win-doc e e 96
3.10 Report Format ll-int-apk e 96
3.11 Report Format ll-int-archive i e e e e e e e e 101
3.12 Report Formatll-web o e e e e e e e e e e e e e 102
3.13 Report Format ll-static 0 e e e e e e e e e e e e e e e e e 111
3.14 Report Format ll-ioc-jsom o e e e e e e e e e e e e 118
3.15 Report Formatll-pcap e e e e e e e 120
3.16 Report Format ll-flash o e e e e e e 122
3.17 Report Format/l-doc e e 125
3.18 Report Descriptions v v v v v e 127
4 Child Tasks 129
5 Sample API Clients 131
5.1 Analyst APIclient L e e e e 131
5.2 AnalysisClient Shell L e 146

5.3 Analyst APIShell Example e 147

5.4 Analyst APIShell Helpers o 0 e e e e e 151
5.5 Application Bundle Module L e e 153
Python Module Index 159
Index 161

CHAPTER
ONE

OVERVIEW

The Lastline Analyst API provides functionality for submitting resources for analysis and obtaining the results. Cur-
rently, it supports URLs as well as various types of executables and documents.

Executables are analyzed by running them inside a sandbox, recording the behavior of the program, and classifying
the file based on the observed actions. Similarly, documents are opened in an instrumented file-editor/viewer or by
analyzing any active components (such as scripts) embedded inside the documents; in either case, the behavior of the
code is used for detecting if the file contains any anomalies.

Additionally, the content of a submitted file is analyzed for structural similarities with other, previously classified
malware artifacts.

URLs are analyzed by visiting them with special, instrumented browsers and observing actions inside the browser or
its interactions with its environment.

The latest version of this documentation can be found at https://analysis.lastline.com/analysis/api-docs/html/overview.
html, or downloaded in PDF format from https://analysis.lastline.com/analysis/api-docs/Lastline AnalystAPLpdf .

1.1 Supported Artifacts

The API supports submissions of URLs and files. The maximum file size is 64 MB for the hosted Lastline infrastruc-
ture - for On-Premises deployments, the limit is configurable (up to 100MB) and defaults to 10 MB.

The following table provides an overview of the supported file types:

* AceArchiveFile: ACE archive data
Lastline mime type: application/x-ace
Typical extension: .ace

* BzipArchiveFile: bzip2 compressed data
Lastline mime type: application/x-bzip
Typical extensions: .bz, .bz2, .tbz, .thz2

¢ CabArchiveFile: Microsoft Cabinet archive data
Lastline mime type: application/vnd.ms-cab-compressed
Typical extension: .cab

* DiagCabArchiveFile: Microsoft Diagnostic Cabinet archive data
Lastline mime type: application/vnd.ms-diagcab-compressed

Typical extension: .diagcab

https://analysis.lastline.com/analysis/api-docs/html/overview.html
https://analysis.lastline.com/analysis/api-docs/html/overview.html
https://analysis.lastline.com/analysis/api-docs/LastlineAnalystAPI.pdf

Lastline Analyst APl Documentation, Release 2.0

* DmgArchiveFile: Apple disk image
Lastline mime type: application/x-apple-diskimage
Typical extensions: .dmg, .smi

* Rfc2822EmailArchiveFile: RFC2822-formatted Email file
Lastline mime type: data/email-rfc2822
Typical extension: .em!

* GzipArchiveFile: gzip compressed data
Lastline mime type: application/x-gzip
Typical extensions: .gz, .18z

* JarArchiveFile: Java JAR archive
Lastline mime type: application/java-archive
Typical extension: .jar

* WebappJarArchiveFile: Java Webapp archive
Lastline mime type: application/war-archive
Typical extension: .war

* LhaArchiveFile: LHa archive data
Lastline mime type: application/x-lha
Typical extensions: .lha, .Izh

* LzmaArchiveFile: LZMA compressed data
Lastline mime type: application/x-lzma
Typical extension: .lzma

* NugetArchiveFile: NuGet package archive
Lastline mime type: application/x-nuget
Typical extension: .nupkg

* UDFISOArchiveFile: UDF filesystem data
Lastline mime type: application/x-udf-image
Typical extensions: .iso, .udf

* ISO9660ISOArchiveFile: ISO 9660 CD-ROM filesystem data
Lastline mime type: application/x-is09660-image
Typical extension: .iso

* RarArchiveFile: RAR archive data
Lastline mime type: application/x-rar
Typical extension: .rar

¢ Rar5ArchiveFile: RAR archive data, version 5
Lastline mime type: application/x-rar5

Typical extension: .rar

2 Chapter 1. Overview

Lastline Analyst APl Documentation, Release 2.0

* TarArchiveFile: POSIX tar archive data
Lastline mime type: application/tar
Typical extension: .tar
* DocumentLLAppBundleTarArchiveFile: Lastline Application Bundle Document Type
Lastline mime type: application/llappbundle-document
Typical extensions: .tar, .llappbundle, .llapp
¢ WindowsExecutableLLAppBundleTarArchiveFile: Lastline Application Bundle Windows Executable Type
Lastline mime type: application/llappbundle-windows-executable
Typical extensions: .tar, .llappbundle, .llapp
* WebReplayLLAppBundleTarArchiveFile: Lastline Application Bundle Web Replay Type
Lastline mime type: application/llappbundle-web-replay
Typical extensions: .tar, .llappbundle, .llapp
* TnefArchiveFile: Transport Neutral Encapsulation Format
Lastline mime type: application/vad.ms-tnef
Typical extension: .dat
» XarArchiveFile: XAR archive data
Lastline mime type: application/x-xar
Typical extensions: .xar, .pkg
* XzArchiveFile: XZ compressed data
Lastline mime type: application/x-xz
Typical extensions: .xz, .txz
 ZipArchiveFile: Zip archive data
Lastline mime type: application/zip
Typical extension: .zip
* SevenZipArchiveFile: 7-zip archive data
Lastline mime type: application/x-7z-compressed
Typical extension: .7z
* MicrosoftSettingContentDataFile: Microsoft Content-Settings data file *
Lastline mime type: text/ms-settingcontent
Typical extension: .settingcontent-ms
» CsvDataFile: CSV Data
Lastline mime type: data/csv
Typical extension: .csv
¢ InternetInquiryDataFile: Internet Inquiry data file «
Lastline mime type: text/x-ms-iqy

Typical extension: .igy

1.1. Supported Artifacts 3

Lastline Analyst APl Documentation, Release 2.0

* SymbolicLinkDataFile: Symbolic Link data file
Lastline mime type: data/symbolic-link
Typical extensions: .slk, .sylk
¢ PcapDataFile: tcpdump capture file
Lastline mime type: application/vnd.tcpdump.pcap
Typical extensions: .pcap, .pcapng
* WordHangulCdfDocFile: Hangul Word Processor document
Lastline mime type: application/hangul-word
Typical extension: .iwp
¢ ChmDocFile: Microsoft Windows HtmlIHelp data
Lastline mime type: application/x-chm
Typical extension: .chm
* HangulDocFile: Hangul HWP3/HWP2000 document
Lastline mime type: application/x-hwp
Typical extension: .iwp
* ExcelMsMimeDocFile: Microsoft Excel document in MHTML format
Lastline mime type: application/msoffice-mime-xls
Typical extension: .xls
* PowerpointMsMimeDocFile: Microsoft Powerpoint document in MHTML format
Lastline mime type: application/msoffice-mime-ppt
Typical extension: .ppt
* WordMsMimeDocFile: Microsoft Word document in MHTML format
Lastline mime type: application/msoffice-mime-doc
Typical extension: .doc
* ExcelMsDocFile: Microsoft Office Excel document
Lastline mime type: application/msoffice-xls
Typical extension: .xls
* TemplateExcelMsDocFile: Microsoft Office Excel template document
Lastline mime type: application/msoffice-xlt
Typical extension: .x/t
* ExcelEncryptedKnownMsDocFile: Microsoft Office Excel document (with password)
Lastline mime type: application/msoffice-xls-encrypted
Typical extensions: .xls, .xlsx
* MacroExcelEncryptedKnownMsDocFile: Microsoft Office Excel document (with password), with macros
Lastline mime type: application/msoffice-xlam-encrypted

Typical extension: .xlam

4 Chapter 1. Overview

Lastline Analyst APl Documentation, Release 2.0

* PowerpointEncryptedKnownMsDocFile: Microsoft Office Powerpoint document (with password)
Lastline mime type: application/msoffice-ppt-encrypted
Typical extensions: .ppt, .pptx
¢ WordEncryptedKnownMsDocFile: Microsoft Office Word document (with password)
Lastline mime type: application/msoffice-doc-encrypted
Typical extensions: .doc, .docx
* PowerpointMsDocFile: Microsoft Office Powerpoint document
Lastline mime type: application/msoffice-ppt
Typical extensions: .ppt, .pps
* TemplatePowerpointMsDocFile: Microsoft Office Powerpoint template document
Lastline mime type: application/msoffice-pot
Typical extension: .pot
* WordMsDocFile: Microsoft Office Word document
Lastline mime type: application/msoffice-doc
Typical extension: .doc
* PublisherWordMsDocFile: Microsoft Publisher document
Lastline mime type: application/msoffice-publisher
Typical extension: .pub
* TemplateWordMsDocFile: Microsoft Office Word document template
Lastline mime type: application/msoffice-dot
Typical extension: .dot
* OoDocFile: Open/LibreOffice document
Lastline mime type: application/vnd.oasis.opendocument
Typical extensions: .odp, .otp, .ods, .odt, .ott, .0dg, .otg
* PdfDocFile: PDF document
Lastline mime type: application/pdf
Typical extension: .pdf
¢ WordPerfectDocFile: WordPerfect document
Lastline mime type: application/wordperfect
Typical extension: .wpd
* RtfDocFile: RTF document
Lastline mime type: text/rtf
Typical extension: .rtf
» SwfDocFile: Macromedia Flash data
Lastline mime type: application/x-shockwave-flash

Typical extension: .swf

1.1. Supported Artifacts 5

Lastline Analyst APl Documentation, Release 2.0

ExcelXmlDocFile: XML-based Microsoft Office Excel document, pre-Office2007
Lastline mime type: application/x-spreadsheetml
Typical extension: .xml

PowerpointXmlDocFile: XML-based Microsoft Office Powerpoint presentation, pre-Office2007
Lastline mime type: application/x-presentationml
Typical extension: .xm!/

WordXmlDocFile: XML-based Microsoft Office Word document, pre-Office2007
Lastline mime type: application/x-wordprocessingml
Typical extension: .xm!/

XdpXmlDocFile: Adobe XDP document
Lastline mime type: application/vnd.adobe.xdp+xml
Typical extension: .xdp

XsIXmlDocFile: eXtensible Stylesheet Language for XML file
Lastline mime type: text/xsl
Typical extension: .xsl

ExcelMsDocxFile: Microsoft Office Excel document, Office Open XML format
Lastline mime type: application/msoffice-xlsx
Typical extension: .xlsx

MacroExcelMsDocxFile: Microsoft Office Excel document, Office Open XML format, with macros
Lastline mime type: application/msoffice-xlsm
Typical extension: .xlsm

BinaryMacroExcelMsDocxFile: Microsoft Office Excel document, Office Open XML format, with macros
and binary storage

Lastline mime type: application/msoffice-xlsb
Typical extension: .xlsb
TemplateExcelMsDocxFile: Microsoft Office Excel template document, Office Open XML format
Lastline mime type: application/msoffice-xltx
Typical extension: .xltx

MacroTemplateExcelMsDocxFile: Microsoft Office Excel spreadsheet template, Office Open XML format,
with macros

Lastline mime type: application/msoffice-xltm
Typical extension: .xltm
PowerpointMsDocxFile: Microsoft Office Powerpoint document, Office Open XML format
Lastline mime type: application/msoffice-pptx
Typical extensions: .pptx, .ppsx

MacroAddInPowerpointMsDocxFile: Microsoft Office Powerpoint AddIn document, Office Open XML for-
mat, with macros

Chapter 1. Overview

Lastline Analyst APl Documentation, Release 2.0

Lastline mime type: application/msoffice-ppam
Typical extension: .ppam

* MacroPowerpointMsDocxFile: Microsoft Office Powerpoint document, Office Open XML format, with
macros

Lastline mime type: application/msoffice-pptm
Typical extension: .pptm
* SlideshowPowerpointMsDocxFile: Microsoft Office Powerpoint Slideshow, Office Open XML format
Lastline mime type: application/msoffice-ppsx
Typical extension: .ppsx

¢ MacroSlideshowPowerpointMsDocxFile: Microsoft Office Powerpoint Slideshow, Office Open XML format,
with macros

Lastline mime type: application/msoffice-ppsm
Typical extension: .ppsm
* TemplatePowerpointMsDocxFile: Microsoft Office Powerpoint template document, Office Open XML format
Lastline mime type: application/msoffice-potx
Typical extension: .potx

* MacroTemplatePowerpointMsDocxFile: Microsoft Office Powerpoint presentation template, Office Open
XML format, with macros

Lastline mime type: application/msoffice-potm
Typical extension: .potm
* WordMsDocxFile: Microsoft Office Word document, Office Open XML format
Lastline mime type: application/msoffice-docx
Typical extension: .docx
* MacroWordMsDocxFile: Microsoft Office Word document, Office Open XML format, with macros
Lastline mime type: application/msoffice-docm
Typical extension: .docm
* TemplateWordMsDocxFile: Microsoft Office Word template document, Office Open XML format
Lastline mime type: application/msoffice-dotx
Typical extension: .dotx

¢ MacroTemplateWordMsDocxFile: Microsoft Office Word document template, Office Open XML format, with
macros

Lastline mime type: application/msoffice-dotm
Typical extension: .dotm

¢ MsXpsMsDocxFile: Microsoft XPS document
Lastline mime type: application/vnd.ms-xpsdocument
Typical extension: .xps

* OpenXpsMsDocxFile: OpenXPS document

1.1. Supported Artifacts 7

Lastline Analyst APl Documentation, Release 2.0

Lastline mime type: application/oxps
Typical extension: .oxps

» JavaClassExeFile: compiled Java class data *
Lastline mime type: application/x-java-class
Typical extension: .class

* ComExeFile: COM executable for DOS
Lastline mime type: application/x-com
Typical extension: .com

* EicarComExeFile: EICAR test virus
Lastline mime type: application/x-eicar
Typical extension: .com

* DosExeFile: MS-DOS executable *
Lastline mime type: application/x-dosexec
Typical extension: .exe

* ElfExeFile: ELF executable
Lastline mime type: application/x-elf
Typical extension: .elf

» MslInstallerExeFile: Microsoft Installer file »
Lastline mime type: application/x-msi
Typical extension: .msi

¢ LnkExeFile: Microsoft Windows shortcut
Lastline mime type: application/x-ms-shortcut
Typical extensions: .Ink, .url

¢ MachOExeFile: Mach-O executable
Lastline mime type: application/x-mach-o-binary
Typical extensions: .o, .dylib, .bundle

* BundleMachOExeFile: Mach-O executable bundle
Lastline mime type: application/x-mach-o-binary-bundle
Typical extension: .bundle

* ExecutableMachOExeFile: Mach-O executable program
Lastline mime type: application/x-mach-o-binary-executable
Typical extension: .o

e LibraryMachOExeFile: Mach-O executable library
Lastline mime type: application/x-mach-o-binary-library
Typical extensions: .o, .dylib

* PeExeFile: PE executable

8 Chapter 1. Overview

Lastline Analyst APl Documentation, Release 2.0

Lastline mime type: application/x-pe
Typical extensions: .exe, .scr, .pif, .com, .bat, .cmd, .cpl
* RarSfxPeExeFile: RAR SFX PE executable
Lastline mime type: application/x-rar-sfx-pe
Typical extension: .exe
» ZipSfxPeExeFile: Zip SFX PE executable
Lastline mime type: application/x-zip-sfx-pe
Typical extension: .exe
* SevenZipSfxPeExeFile: 7zip SFX PE executable
Lastline mime type: application/x-7zip-sfx-pe
Typical extension: .exe
* LastlineTestPeExeFile: Lastline PE test file
Lastline mime type: application/x-lastline-test
Typical extensions: .exe, .dll, .sys
* MachOFatUniversalExeFile: Mach-O fat file
Lastline mime type: application/x-mach-o-fat-binary
Typical extensions: .o, .dylib, .bundle
 TifflmageFile: TIFF image data
Lastline mime type: image/tiff
Typical extensions: .tif, .tiff
* SvgXmlImageFile: SVG image data »
Lastline mime type: image/svg
Typical extension: .svg
* HTAScriptFile: HTA Script File text *
Lastline mime type: text/hta
Typical extension: .Ata
¢ VBAVisualBasicScriptFile: Visual Basic for Applications text =
Lastline mime type: text/vba
Typical extension: .vba
* VBSVisualBasicScriptFile: VBScript text
Lastline mime type: text/vbscript
Typical extension: .vbs
* EncodedVBSVisualBasicScriptFile: VBScript encoded script *
Lastline mime type: application/encodedvbscript
Typical extension: .vbe

» BatchScriptFile: Batch script text «

1.1. Supported Artifacts 9

Lastline Analyst APl Documentation, Release 2.0

Lastline mime type: text/x-msdos-batch
Typical extensions: .bat, .cmd

* JavascriptScriptFile: JavaScript text
Lastline mime type: application/javascript
Typical extension: .js

¢ EncodedJavascriptScriptFile: JScript encoded script *
Lastline mime type: application/encodedjscript
Typical extension: .jse

* PerlScriptFile: Perl script text
Lastline mime type: text/x-perl
Typical extensions: .pl, .pm

* PowershellScriptFile: PowerShell text »
Lastline mime type: text/x-powershell
Typical extensions: .psi, .psml, .psdl

* PythonScriptFile: Python script text
Lastline mime type: text/x-python
Typical extension: .py

* ShellScriptFile: Shell script text
Lastline mime type: text/x-shellscript
Typical extensions: .sh, .command

* WindowsScriptFile: Windows Script File text
Lastline mime type: text/x-wsf
Typical extension: .wsf

* InternetShortcutFile: Internet Shortcut file
Lastline mime type: text/x-internetshortcut
Typical extensions: .url, .website

* HtmlTextFile: HTML document
Lastline mime type: text/html
Typical extensions: .html, .htm

» These file types are only supported if the Windows sandbox is configured for the requesting license. NOTE: In
some cases, the Lastline mime types shown in the above list represent a unified, generalized version of standard mime
types. This allows mapping different, semantically equivalent types into a single type.

The API supports the most common container formats. When submitting an container (archive or ISO, for example)
file, the API will automatically attempt to extract and analyze the contained files. More precisely, the API will create
a child analysis (for details, see Child Tasks) for files extracted from the container that have a supported file type.
Additionally, for multi-file containers containing executables (such as programs or scripts) that should be analyzed as
whole, the API attempts to generate program bundles (see Handling of Containers). For encrypted containers (such
as encrypted archives), submit_file () allows you to specify a decryption password or list of potential passwords
- if none is specified, the API attempts decryption using common industry-standard passwords (such as “infected”).

10 Chapter 1. Overview

Lastline Analyst APl Documentation, Release 2.0

The API supports the following container types:

» AceArchiveFile: ACE archive data
Lastline mime type: application/x-ace
Typical extension: .ace

* BzipArchiveFile: bzip2 compressed data
Lastline mime type: application/x-bzip
Typical extensions: .bz, .bz2, .tbz, .tbz2

* CabArchiveFile: Microsoft Cabinet archive data
Lastline mime type: application/vnd.ms-cab-compressed
Typical extension: .cab

» DiagCabArchiveFile: Microsoft Diagnostic Cabinet archive data
Lastline mime type: application/vnd.ms-diagcab-compressed
Typical extension: .diagcab

* GzipArchiveFile: gzip compressed data
Lastline mime type: application/x-gzip
Typical extensions: .gz, .18z

* LhaArchiveFile: LHa archive data
Lastline mime type: application/x-lha
Typical extensions: .lha, .Izh

¢ LzmaArchiveFile: LZMA compressed data
Lastline mime type: application/x-lzma
Typical extension: .lzma

* NugetArchiveFile: NuGet package archive
Lastline mime type: application/x-nuget
Typical extension: .nupkg

* UDFISOArchiveFile: UDF filesystem data
Lastline mime type: application/x-udf-image
Typical extensions: .iso, .udf

* ISO9660ISOArchiveFile: ISO 9660 CD-ROM filesystem data
Lastline mime type: application/x-iso9660-image
Typical extension: .iso

¢ RarArchiveFile: RAR archive data
Lastline mime type: application/x-rar
Typical extension: .rar

¢ Rar5ArchiveFile: RAR archive data, version 5

1.1. Supported Artifacts 11

Lastline Analyst APl Documentation, Release 2.0

Lastline mime type: application/x-rar5
Typical extension: .rar

» TarArchiveFile: POSIX tar archive data
Lastline mime type: application/tar
Typical extension: .tar

¢ XzArchiveFile: XZ compressed data
Lastline mime type: application/x-xz
Typical extensions: .xz, .txz

» ZipArchiveFile: Zip archive data
Lastline mime type: application/zip
Typical extension: .zip

* SevenZipArchiveFile: 7-zip archive data
Lastline mime type: application/x-7z-compressed
Typical extension: .7z

* RarSfxPeExeFile: RAR SFX PE executable
Lastline mime type: application/x-rar-sfx-pe
Typical extension: .exe

» ZipSfxPeExeFile: Zip SFX PE executable
Lastline mime type: application/x-zip-sfx-pe
Typical extension: .exe

» SevenZipSfxPeExeFile: 7zip SFX PE executable
Lastline mime type: application/x-7zip-sfx-pe
Typical extension: .exe

NOTE: In some cases, the Lastline mime types shown in the above list represent a unified, generalized version of
standard mime types. This allows mapping different, semantically equivalent types into a single type.

1.2 Getting Started

The Analyst API is a web-based API. To get started using it, you will need to request an API key and API token from
Lastline. These will act as your credentials for accessing the API.

For clients accessing the API hosted in a Lastline datacenter, the API is reachable at https://analysis.
lastline.com. For clients using an On-Premises deployment, the API is reachable using the URL https:/
/log.<fgdn>/analysis on Lastline Enterprise Manager or Pinbox appliances, and the URL https://
<fgdn>/analysis for Lastline Analyst appliances.

In addition to the full AP/ Reference, this documentation also provides two Sample API Clients for accessing this APL
These are written in Python. One of them is also available as a self-contained Microsoft Windows executable.

12 Chapter 1. Overview

Lastline Analyst APl Documentation, Release 2.0

1.3 API Concepts

The Lastline Analyst API is an asynchronous API, in the sense that, when a resource (a file or a URL) is submitted
for analysis, the analysis results are typically not returned immediately in the response. Instead, a unique identifier
(UUID) for the submitted analysis task is returned. This UUID can later be used in a separate request to get the
analysis results for this task.

The reason for this approach is that analyzing a resource can take some time. For instance, analyzing an executable
requires running it for several minutes in an analysis sandbox.

However, in some cases the submitted resource may have been already analyzed by the analysis platform. In these
cases, the API is able to immediately return an analysis result.

1.4 Workflow

The expected usage of this API is to follow these steps:

1. Call submit_file () or submit_url () several times to submit a number of artifacts, and store the re-
turned task UUIDs.

2. Call get_completed () to get the UUIDs of tasks completed since the last time get__completed () was
called.

3. Call get_result () onreturned UUIDs to obtain results.
4. Repeat steps 2 and 3 until results are available for all UUIDs.

Using the get_completed () function avoids polling for results for each submission individually by repeatedly
calling the get__result () function until results are available, which is very inefficient and may be enforced by the
API: if a client makes too many calls to get_result () onincomplete tasks, it may be blocked from making further
calls due to violations of this protocol.

Note that the submit_file () and submit_url () functions may immediately return an analysis result, in which
case the call to get_result () is not necessary (the UUID will still be returned by get_completed()). If a
client does not require the detailed analysis results at time of the submission, specify the full_report_score parameter.
Further, the API allows submitting a file by-hash if the file is already available in the analysis system, avoiding an
unnecessary upload of the file-content; see submit_file () for details.

1.5 Handling of Containers

The API analyzes submissions of archives or other containers by treating these types of files as closely as possible to
how a real user would: the system tries to understand how a real victim would behave when receiving the file.

For example, when the system finds a document inside an archive, this document is sent for deeper analysis “by itself”,
as documents typically are self-contained elements.

A different example is when the API handles archives with multiple programs, or when a program is shipped with
additional files (such as configuration files or program libraries). In this case, it is often not meaningful to analyze
each program individually, as one would expect the first program to call the other, read the configuration file embedded
in the archive, or load the program library. Thus, the program would most likely fail to run successfully if analyzed
“by itself” (otherwise one would not expect these files to be distributed together in the same archive).

Thus, the API may analyze this type of container containing multiple files via program bundles: all files in the container
are copied into the analysis system, and metadata embedded in the bundle describes how to launch these files. If more

1.3. API Concepts 13

Lastline Analyst APl Documentation, Release 2.0

than one program is found and the system cannot identify which program to launch as “main” subject of the analysis,
multiple bundle analysis runs are triggered.

For details on program bundles, see Application Bundle Module.

14 Chapter 1. Overview

CHAPTER
TWO

API REFERENCE

2.1 Authentication

For authentication, all Lastline Analyst API endpoints accept two methods of reading credentials: HTTP Basic Au-
thentication (as defined in RFC-7617) or the following pair of authentication parameters in the request:

* key: Lastline Analyst API key
* api_token: secret Lastline Analyst API token
Since the API is accessed over https, these parameters are never sent in clear-text. Both parameters are ASCII text.

The key and api_token parameters can be embedded in each request to the Lastline Analyst APL. Alter-
natively, the client can use the 1ogin () function to explicitly validate its credentials and establish an HTTP
session. As long as the client provides the session token and the session is valid, the client may skip pro-
viding the credentials. When using an expired session token for authentication, the API will return the error
ANALYSIS _API_AUTHENTICATION_REQUIRED, instructing the client to re-authenticate.

A client may mandate that the API should not establish a session by setting the HTTP header
x-nsx—lastline-no-session: 1.

2.2 Response Format

The format of API responses can be selected by appending an extension to the request URL. Supported formats are
JSON and XML. If no extension is provided, the format defaults to JSON. JSON is the recommended format for
automated processing, while XML is recommended for human consumption (since modern browsers make it readable
by pretty-printing it).

A successful response comes in the form:

’{"success": 1, "data":...}

A failed response will return:

’{"success": 0, "error_code": <ERROR_CODE>, "error": <ERROR_MESSAGE>}

The error_code field is optional.

Numbers returned by the API can be either decimal or hexadecimal. Hexadecimal numbers are always prefixed by
‘0x’.

Timestamps returned by the API are in UTC.

15

Lastline Analyst APl Documentation, Release 2.0

2.3 Methods

2.3.1 Method Index

submit_file (): Submit a file (PE, PDF, doc, etc.) for analysis.

submit_url (): Submit a URL for analysis (do NOT submit links to executables here!)
get_results (): Fetch the results of a previously submitted analysis task
get_result (): Fetch the result summary of a previously submitted analysis task

get_result activities (): Fetch information about the behavior detected as part a previously submit-
ted analysis task

get_report activities (): Fetch information about the behavior detected as part a previously submit-
ted analysis task, specific to a given analysis report

get_result artifact (): Fetch an artifact generated during the analysis of a previously submitted analy-
sis task. When an artifact is associated with a specific analysis report (which is usually the case in practice),
consider using get_report_artifact ()

get_report_artifact (): Fetch an artifact generated during the analysis of a previously submitted anal-
ysis task when this artifact is bound to a specific analysis report

get_completed (): Get alist of analysis tasks that were recently completed

get_completed with _metadata (): Get a list of uuids, scores, and additional task metadata for re-
cently completed analysis tasks

get_pending (): Get a list of analysis tasks that are pending completion

get_progress (): Get the estimated task completion for a previously submitted analysis task
get_task metadata (): Get information about a task by its UUID

query file hash (): Query the system for results for a file using its hash

is blocked file hash(): Query the system for results for a file using its hash and check if the file is
save for blocking using the given hash

query task artifact (): Check if a specific task-artifact (such as the analysis subject) is available for
download

get_network iocs (): Getthe network IoC data for an analysis task.
get_ioc_metadata (): Getinformation about an IOC by its UUID
get_ioc_report (): Getan IOC by its UUID

create_ioc_from result (): Create an IOC based on an analysis result

get_api_ utc timestamp (): Get the current UTC timestamp to be used in the API calls that require
current timestamp

get_analysis tags (): Get the analysis tags for an analysis task
get_child tasks recursively (): Get all child tasks of the given task recursively
export report (): Export a report or a combination of reports for a task

get_completed exported reports (): Getalist of available exported analysis reports
get_exported_report (): Get an exported analysis report

is _risky analysis artifact (): Check if artifact is potentially malicious

16

Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

e login (): Performs an initial login to service and establish a session

* ping(): Verifies an active session

2.3.2 Method Documentation
malscape_service.api.views.analysis.submit_file (response_format)
Submit a file for analysis.
There are two main use-cases for this function.

* Caller provides a hash of the file (through the mdS and/or shal parameters). The submit will fail if the a
file with that hash is not already available to in the cloud.

e Caller uploads a file using the file parameter. In this case, the md5 and shal parameters are ignored.

The typical work-flow is to first attempt to submit a hash and, if that fails with error-code
ANALYSIS API_FILE UPLOAD_REQUIRED, try again with the actual file.

NOTE: Submissions by file hash and submissions using the file content have identical semantics. Either sub-
mission type may trigger a new analysis, even if the file has been seen by the analysis system before. Using
submissions by file hash brings the advantage that the file content may not need to be transferred, provid-
ing significantly reduced data upload for submissions of large files. The client cannot assume that a file is
available for submissions by hash, even if the file has been uploaded previously (files may be deleted af-
ter analysis or may be subject to data-retention). Thus, submissions by file hash may fail with error-code
ANALYSIS_API_FILE_UPLOAD_REQUIRED any time the file content is not provided as part of the submis-
sion.

On a successful submission, this method will return a unique identifier for the task, which can later be used to
query for results using get_results (). Furthermore, if there are already results available for the submitted
file, they will be included in the response (see function get_results ()). If the detailed analysis report is
not required, the caller may set the full_report_score parameter (e.g., to value -1) to suppress downloading the
unnecessary data.

URL
/analysis/submit/file[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
POST
POST Parameters
* key: Lastline API key. (required)
* api_token: Lastline API token. (required)
* md5: MDS5 hash (in hex) of submitted file.
e shal: SHAI1 hash (in hex) of submitted file.
e sha256: SHA256 hash (in hex) of submitted file.

e full_report_score: Minimum score that causes detailed analysis reports to be served; -1 indicates “never
return full report”; 0 indicates “return full report at all times”. (optional, default=0)

* delete_after_analysis: Boolean (specified as 1 or 0). If true, the backend will delete the file after analysis
is done (and noone previously submitted this file with this flag set). (optional, default=0)

* bypass_cache: Boolean (specified as 1 or 0). If true, the API will not serve a cached result. NOTE:
Setting this parameter requires non-default privileges. (optional, default=0)

2.3. Methods 17

Lastline Analyst APl Documentation, Release 2.0

* analysis_timeout: Timeout in seconds after which to terminate analysis. By default, the analysis engine
automatically detect this timeout based on the behavior observed during analysis. By setting this
parameter explicitly, the analysis terminates when all relevant behavior has been observed or when
the given timeout is reached. NOTE: Setting this parameter requires non-default privileges. (optional,
default=<depends on type of submission>)

* analysis_env: Enforce analysis in a specific environment. By default, the system selects the most ap-
propriate environment(s) based on the type of file submitted and the available analysis environments.
Thus, it is advisable to allow the system to auto-detect this value. The availability of different operat-
ing systems depends on the customization of the analysis system. By default (or when using the API
hosted by Lastline), the following values are available:

— windows10, and
— windows7

NOTE: Setting this parameter requires non-default privileges - any value provided in absence of the
required permission will be overridden with automatically selected data. (optional, default=<depends
on type of submission>)

 allow_network_traffic: Boolean (specified as 1 or 0). If false, all network connections will be redirected
to a honeypot. NOTE: Setting this parameter requires non-default privileges. (optional, default=1)

* filename: Filename to use during analysis. If none is passed, the analysis engine will pick an appropri-
ate name automatically, but submitting this information is highly recommended for obtaining best
analysis results. See Filename for details. (optional, default=<none>)

¢ keep_file_dumps: Boolean (specified as 1 or 0). If true, more files generated during analysis will be
stored for post-processing. NOTE: This can generate large volumes of data and is not recommended.
NOTE: Setting this parameter requires non-default privileges. (optional, default=0)

* keep_memory_dumps: Boolean (specified as 1 or 0). If true, more memory snapshots taken during
analysis will be kept for post-processing. NOTE: This can generate large volumes of data and is not
recommended. NOTE: Setting this parameter requires non-default privileges. (optional, default=0)

* keep_behavior_log: Boolean (specified as 1 or 0). If true, the raw behavior log extracted during analysis
will be kept for post-processing. NOTE: This can generate very very large volumes of data and is not
recommended. NOTE: Setting this parameter requires non-default privileges. (optional, default=0)

* push_to_portal_account: If set, a successful submission will be pushed to the web-portal using the spec-
ified username. NOTE: It is strongly discouraged to use this parameter for automated or bulk submis-
sions. See Web-Portal Integration for details. (optional, default=<none>)

* protocol: Protocol used to obtain the submitted file. One of “FTP”, “HTTP”, “SMB. (optional, de-
fault=HTTP)

« server_ip: ASCII dotted-quad representation of the IP address that was originally used to download this
file. The IP is mandatory for the storage of the metadata. See File Origin for details. (optional,
default=<none>)

* server_port: Integer representation of the network port number that was originally used to download this
file. The port is mandatory for the storage of the metadata. See File Origin for details. (optional,
default=<none>)

¢ client_ip: ASCII dotted-quad representation of the IP address of the client for FTP or SMB connections.
(optional, default=<none>)

* client_port: Integer representation of the network port number of the client used for FTP or SMB con-
nections. (optional, default=<none>)

18 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

direction: One of “TO_SERVER” or “FROM_SERVER”. Use “TO_SERVER” to indicate FTP
or SMB uploads, “FROM_SERVER” to indicate FTP or SMB downlaods. (optional, de-
fault="FROM_SERVER”)

report_version: Version name of the report that will be returned. (optional, default=<most applicable,
depends on type of report>)

download_ip: DEPRECATED, do not use. See server_ip.
download_port: DEPRECATED, do not use. See server_port.

apk_package_name: DEPRECATED, do not use. Package name for APK files. (optional, de-
fault=<none>)

password: Password to use when trying to analyze password-protected or encrypted content (such as
archives or documents) (optional, default=<none>)

priority: Priority level to set for this analysis. Priority must be between 1 and 10 (1 is the lowest priority,
10 is the highest) (optional, default=<user default>)

bypass_prefilter: Boolean (specified as 1 or 0). If True, file is submitted to all supported analysis com-
ponents without prior static analysis. NOTE: Setting this parameter requires non-default privileges.
(optional, default=0)

fast_analysis: Boolean (specified as 1 or 0). If True, file is submitted only to static analyzers NOTE:
Setting this parameter requires non-default privileges. (optional, default=0)

FILE Parameters

These parameters are provided as uploaded files encoded as multipart/form-data.
« file: Actual body of the file to analyze

* download_host: HTTP host header from which this file was originally downloaded. See File
Origin for details. (optional, default=<none>)

* download_path: FTP/HTTP/SMB host path from which this file was originally downloaded
from or uploaded to. See File Origin for details. (optional, default=<none>)

* download_user_agent: HTTP user-agent header that was used when this file was originally
downloaded. (optional, default=<none>)

* download_referer: HTTP refer(r)er header that was used when this file was originally down-
loaded. (optional, default=<none>)

* download_request: Full HTTP request that was originally used to download this file. (optional,
default=<none>)

» password_candidates: A list of passwords to use when trying to analyze password-protected
or encrypted content (such as archives or documents) (optional, default=<none>)

NOTE The API will reject a submission if this parameter exceedes the max number of 1000
password_candidates or if the amount of data passed is longer than 128 Kb

Error Codes

e ANALYSIS API_ INVALID CREDENTIALS: Provided key and api_token are not valid credentials.

e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_FILE UPLOAD_REQUIRED. When submitting by hash: file content required for

analysis.

e ANALYSIS API FILE TOO_ LARGE: When submitting by file: Provided file exceeds upload limit.

23.

Methods

Lastline Analyst APl Documentation, Release 2.0

NOTE: Uploaded files beyond a certain limit will be rejected by the server without reaching the
Analyst APIL. In these cases the server will respond with 413 Request Entity Too Large. Clients must
thus handle both, HTTP-413 and ANALYSIS API_FILE TOO_LARGE.

e ANALYSIS API_TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.
e ANALYSIS API INVALID D METADATA: Invalid download metadata were specified.

e ANALYSIS API SUBMISSION LIMIT EXCEEDED: The number of submissions allowed for this li-
cense has been exceeded. Certain licenses are restricted in the number or type of submissions allowed
on a 24-hour interval.

e ANALYSIS API_INVALID REPORT VERSION: Invalid report version.

e ANALYSIS API_FILE EXTRACTION FAILED: Extracting files from the submitted archive failed.
Either the archive format is not supported or the archive is protected with an unknown password.

e ANALYSIS API CHILD TASK CHAIN TOO DEEP: Creating child tasks for a given analyst-engine
reached the max limit

e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.
e ANALYSIS_API_INVALID_PRIORITY: Invalid priority level.
Contents of successful response
e task_uuid: Unique identifier of submitted task, for use with get_results ()
¢ submission_timestamp: Timestamp of when the submission was created.

 expires The time after which the response is considered stale. The client may cache the returned task for
this submission up to this time. For any submission after this time, the API may decide to return a
new task.

* If results are already available, the analysis report, the score, and other additional fields are returned as in
a successful request to get_results ().

malscape_service.api.views.analysis.submit_url (response_format)
Submit a URL for analysis.

On a successful submission, this method will return a unique identifier for the task, which can later be used to
query for results using get__results (). Furthermore, if there are already results available for the submitted
URL, they will be included in the response (see function get_results ()). If the detailed analysis report is
not required, the caller may set the full_report_score parameter (e.g., to value -1) to suppress downloading the
unnecessary data.

URL
/analysis/submit/url[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
POST
POST Parameters
* key: Lastline API key. (required)
* api_token: Lastline API token. (required)
e url: URL to analyze. (required)

* referer: HTTP refer(r)er header to use in request (note that this is not spelled “referrer” to be in accor-
dance with the original HTTP specification). (optional, default=<none>)

20 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

* full_report_score: Minimum score that causes detailed analysis reports to be served; -1 indicates “never
return full report”; 0 indicates “return full report at all times”. (optional, default=0)

* bypass_cache: Boolean (specified as 1 or 0). If true, the API will not serve a cached result. NOTE:
Setting this parameter requires non-default privileges. (optional, default=0)

* analysis_timeout: Timeout in seconds after which to terminate analysis. By default, the analysis engine
automatically detect this timeout based on the behavior observed during analysis. By setting this
parameter explicitly, the analysis terminates when all relevant behavior has been observed or when
the given timeout is reached. NOTE: Setting this parameter requires non-default privileges. (optional,
default=<depends on type of submission>)

* push_to_portal_account: If set, a successful submission will be pushed to the web-portal using the spec-
ified username. NOTE: It is strongly discouraged to use this parameter for automated or bulk submis-
sions. See Web-Portal Integration for details. (optional, default=<none>)

» user_agent: HTTP User-Agent header to use in requests. (optional, default=<none>)

* report_version: Version name of the report that will be returned. (optional, default=<most applicable,
depends on type of report>)

e priority: Priority level to set for this analysis. Priority must be between 1 and 10 (1 is the lowest priority,
10 is the highest) (optional, default=<user default>)

« fast_analysis: Boolean (specified as 1 or 0). If True, URL is submitted only to selected static analyzers.
NOTE: Setting this parameter requires non-default privileges. (optional, default=0)

FILE Parameters
These parameters are provided as uploaded files encoded as multipart/form-data.

» password_candidates: A list of passwords to use when trying to analyze password-protected
or encrypted URL content. (optional, default=<none>)

NOTE The API will reject a submission if this parameter exceeds the max number of 1000
password_candidates or if the amount of data passed is longer than 128 Kb

Error Codes
e ANALYSIS API INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API INVALID URL: Invalid URL or refer(r)er submitted.
e ANALYSIS API TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.

e ANALYSIS API SUBMISSION LIMIT EXCEEDED: The number of submissions allowed for this li-
cense has been exceeded. Certain licenses are restricted in the number or type of submissions allowed
on a 24-hour interval.

e ANALYSIS API_INVALID REPORT VERSION: Invalid report version.

e ANALYSIS API_CHILD TASK CHAIN_ TOO DEEP: Creating child tasks for a given analyst-engine
reached the max limit

e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.
e ANALYSIS_API_INVALID_PRIORITY: Invalid priority level.

Contents of successful response
e task_uuid: Unique identifier of submitted task, for use with get_results ()

¢ submission_timestamp: Timestamp of when the submission was created.

23.

Methods 21

Lastline Analyst APl Documentation, Release 2.0

L]

expires The time after which the response is considered stale. The client may cache the returned task for
this submission up to this time. For any submission after this time, the API may decide to return a
new task.

If results are already available, the analysis report, the score, and other additional fields are returned as in
a successful request to get_results ().

malscape_service.api.views.analysis.get_results (response_format)
Get analysis results for a task.

NOTE: Do not call this method to query if a task has completed. This method may only be used on tasks that
have been marked as completed as part of the results returned to a call of get_completed (). The method
get_completed () allows to efficiently query for task completion of a large number of pending tasks in
parallel without polling for the status of individual tasks. If a client violates this protocol and too frequently
invokes the get_results method on incomplete tasks, the client may be blocked from making further calls.

URL

/analysis/get[. response_format]

response_format can be xml, json, RTF, or PDF (defaults to json). For RTF or PDF the result is

an HTTP file download response.

HTTP METHOD

GET or POST

GET/POST Parameters

L]

key: Lastline API key. (required)
api_token: Lastline API token. (required)
uuid: Identifier of requested task. (required)

full_report_score: Minimum score that causes detailed analysis reports to be served; -1 indicates “never
return full report”; 0 indicates “return full report at all times”. If report_uuid is specified, this param-
eter is ignored. (optional, default=0)

report_version: Version name of the report that will be returned. If report_uuid is not specified, this
parameter is ignored. (optional, default=<most applicable, depends on type of report>)

report_uuid: Identifier of the requested report if the task results is composed of multiple reports. Requires
special permissions. (optional, default=<most applicable, depends on type of report>)

include_scoring_components: Boolean (specified as 1 or 0), telling whether details of all components
contributing to the overall score should be returned individually. NOTE: Setting this parameter re-
quires non-default privileges. (optional, default=0)

allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes

ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

ANALYSIS API INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

ANALYSIS API_NO_ RESULT FOUND: No results are yet available for requested task
ANALYSIS API_TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.

ANALYSIS API INVALID REPORT VERSION: Invalid report version.

22

Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

e ANALYSIS API NO_IOC_EXTRACTABLE: No IOCs can be extracted from the given task (only if the
requested report_version refers to an IOC report). See error-code description for details.

e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response

* score: Score between 0 and 100 indicating maliciousness of the observed behavior (O=benign,
100=malicious).

 submission: Timestamp of when the task was created.

* last_submission_timestamp: (optional) Timestamp of when the task was last re-evaluated,
which is the most recent submission with the current task-UUID.

» malicious_activity: (optional) Subset of the behavior report identifying interesting behavior.
If features outside the observed behavior contribute to the maliciousness score, this field
might not be available.

* activity_to_mitre_techniques: (optional) Dictionary that maps the malicious activities found
to a list of Mitre techniques information correlated with the activity.

* errors: (optional) A list of error messages explaining why a submitted artifact could not be
processed.

* threat: (optional) A threat classification.
* threat_class: (optional) A threat-class classification.

* report (optional): Analysis report for submitted resource. This field will not be returned if the
full_report_score parameter has been provided and is greater than the score.

* reports (optional): Information about available analysis reports and their relevance for the
analysis results.

report_uuid: Analysis report UUID (see report_uuid parameter).

relevance: Number (0-1) on how relevant this report is when compared to other analysis
reports available for this result.

description (optional): A short description of the analysis report, such as the analysis
environment.

report_versions (optional): A list of available report versions. Each report versions rep-
resents analysis information differently, focusing on different aspects of the analysis.
Not all report versions apply to all reports.

For more information on the response format and report details, refer to Analysis Results.

malscape_service.api.views.analysis.get_result (response_format)
Get analysis result summary for a task. This is a short version of the data returned by get_results().

NOTE: Do not call this method to query if a task has completed. This method may only be used on tasks that
have been marked as completed as part of the results returned to a call of get__completed (). The method
get_completed () allows to efficiently query for task completion of a large number of pending tasks in
parallel without polling for the status of individual tasks. If a client violates this protocol and too frequently
invokes the ger_result method on incomplete tasks, the client may be blocked from making further calls.

URL
/analysis/get_result[. response_format)
response_format can be xml or json (defaults to json)

HTTP METHOD

2.3. Methods 23

Lastline Analyst APl Documentation, Release 2.0

GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
* api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)

e score_only: If set to 1, the results only contain the score and threat/threat- class classification. Some
licenses are restrictred to fetching only this data. (optional, default=0)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_ INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API_NO_RESULT_ FOUND: No results are yet available for requested task

e ANALYSIS API TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.

e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response

* See get_results (). Response excludes report format.

malscape_service.api.views.analysis.get_result_activities (response_format)
Get the behavior/activity information for an analysis task.

URL
/analysis/get_result_activities[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
e key: Lastline API key. (required)
¢ api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)

* allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.

24 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

Contents of successful response
e task_uuid: The task uuid sent in the request

* report_activities: A list of details about each activity in the given result. Each list entry has the following
keys:

type: Type of the activity (e.g. “Behavior” or “Evasion”).

description: Description of the activity.

severity: Severity of this activity.

reports: Reports in this result that contain this activity. Each list entry has the keys described
below
Contents of reports entries
* report_uuid: Analysis report UUID (see get_results ()).
¢ has_action_ids: If 1, the behavior is associated with specific actions (see

get_report_activities ()), otherwise 0.

malscape_service.api.views.analysis.get_report_activities (response_format)
Get the behavior/activity information for a specific analysis report.

URL
/analysis/get_report_activities|. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
 api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)
* report_uuid: Identifier of the report. (required)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_ INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION_ DENIED: Access to service functionality has been denied.

e ANALYSIS API_INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response

e task_uuid: The task uuid sent in the request

¢ report_uuid: The report uuid sent in the request

* report_activities: A list of details about each activity in the given report. Each list entry has the following
keys:

2.3. Methods 25

Lastline Analyst APl Documentation, Release 2.0

type: Type of the activity (e.g. “Behavior” or “Evasion”).

description: Description of the activity.

severity: Severity of this activity.

— action_ids: Action-IDs related to this activity (set of IDs).

malscape_service.api.views.analysis.get_result_artifact (response_format)

Get artifact associated with or generated by an analysis result.

NOTE: For artifacts extracted from a specific analysis report, consider using get_report_artifact ()
instead of this function.

URL
/analysis/get_result_artifact[. response_format)

response_format can be raw, xml, or json (defaults to raw). Files should always be downloaded
in raw format, which serves the result as HTTP file download. Other formats are only meaning-
ful to get a more descriptive error-code.

HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
¢ api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)

« artifact_uuid: Identifier of requested task artifact in the form of <report-UUID>:<artifact-name>. (re-
quired)

* password_protected: If provided, use this password to protect the artifact in a zip archive. The password
provided should be using only ASCII characters and have max length of 128 characters (optional)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes

Other than most API calls, this function serves raw HTTP responses if the default response_format
(raw) is used. In this case, the API will use standard HTTP error codes:

* 401 - Unauthorized: Access to service functionality has been denied.
* 404 - Not Found: The requested artifact is not available.

* 410 - Gone: The requested artifact is no longer available. Old analysis artifacts are cleaned up
after a certain time.

* 412 - Precondition Failed: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

For response_formats json and xml, the API will respond using the following error status codes:

e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid cre-
dentials.

e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_INVALID UUID: task_uuid is not a valid uwuid (as returned by
submit_file () or submit_url()).

Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

ANALYSIS API_NO_RESULT FOUND: No results are yet available for requested task

ANALYSIS API_ TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.

ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier miss-
ing.

e :py:data: ANALYSIS_API_INVALID_ARTIFACT _UUID: Atrtifact_uuid contains an invalid
artifact name and/or report uuid.

Contents of successful response

Other than most API calls, this function serves raw HTTP responses containing the artifact content
if the default response_format (raw) is used.

Otherwise the response contains the following fields:
* content: A human-readable representation of the artifact.

* errors: (optional) A list of error messages explaining why a submitted artifact could not be
processed.

malscape_service.api.views.analysis.get_report_artifact ()
Get artifact associated with a specific analysis report.

URL
/analysis/get_report_artifact
HTTP METHOD
GET or POST
GET/POST Parameters
e key: Lastline API key. (required)
¢ api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)
* report_uuid: Identifier of the requested report to which the artifact is assigned. (required)
* artifact_name: Identifier of the requested assigned. (required)

» password_protected: If provided, use this password to protect the artifact in a zip archive. The password
provided should be using only ASCII characters and have max length of 128 characters (optional)

* allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes

Other than most API calls, this function serves raw HTTP responses. The API will use standard
HTTP error codes:

* 401 - Unauthorized: Access to service functionality has been denied.
* 404 - Not Found: The requested artifact is not available.

* 410 - Gone: The requested artifact is no longer available. Old analysis artifacts are cleaned up
after a certain time.

* 422 - Unprocessable Entity: The provided task, report, or artifact UUID is not valid (as re-
turned by get_result ()).

Contents of successful response

2.3. Methods 27

Lastline Analyst APl Documentation, Release 2.0

Other than most API calls, this function serves raw HTTP responses containing the artifact content.

malscape_service.api.views.analysis.get_completed (response_format)
Get the list of uuids of tasks that were completed within a given time frame. This allows to efficiently query the
completion status of multiple previously submitted tasks in one call, without requiring to poll for the status for
individual tasks.

The main use-case for this method is to periodically request a list of UUIDs completed since the last time this
method was invoked, and then fetch each result with get_ result ().

get_completed_with metadata () should be used instead since it retrieves the score as well as any
additional metadata for each task.

The format for date parameters is one of:
e date: ‘YYYY-MM-DD’
* datetime: ‘YYYY-MM-DD HH:MM:SS’
All times are in UTC.
URL
/analysis/get_completed|. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
¢ api_token: Lastline API token. (required)
« after: Request tasks completed after this time. (required)
* before: Request tasks completed before this time. (optional, default=<current timestamp>)

¢ include_score: If set to 1, the result will be a mapping between completed task UUIDs and task scores.
(optional, default=0)

Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_ PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response
* after: Start of considered time range.

* before: End of considered time range. If no such value was specified, the API returns the current times-
tamp (which can be used if the local clock is skewed)

» resume: The ‘after’ time to use for a subsequent get_completed call to resume collection of completed
tasks.

* more_results_available (optional): The API limits the number of tasks returned in a single result in some
situations. If this happened, this flag is set to ‘1’ and the caller must continue fetching completed-data.

« tasks: List of task UUIDs of tasks completed in the specified time range either as plain list (if in-
clude_score=0) or as mapping between task UUIDs and scores (if include_score=1).

28 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

Example

To periodically request a list of completed UUIDs, the following pattern can be used:

ret = analysis.get_completed(after="2020-08-05 14:00:39")

ret contents will be similar to:
#{u'data': {u'after': u'2020-08-05 14:00:39"',

the method will respond with:
#{u'data': {u'after': u'2020-08-07 00:25:50"',

u'before': u'2020-08-07 00:25:49",

u'resume': u'2020-08-07 00:25:50",

u'tasks': [u'05243bb7443e4bba80a5890969102082",

u'aBea86b5d0d84b4bb86fedd785a9d903 "]},
u'success': 1}

...walit some time...
analysis.get_completed(after=ret["data"] ["resume"])

u'before': u'2020-08-07 00:27:49",
u'resume': u'2020-08-07 00:27:50",
u'tasks': [u'e66b56f2cd4948c7ab314217e3bebcf2']},
u'success': 1}
Notes

While individual analysis reports (returned by get__results ()) specify the start and end time of their analy-
sis, they should be ignored for the purposes of this method. Only the values of the after and before fields in the

response contents should be considered.

The resume parameter contains the timestamp to be used for subsequent calls to allow iterating through all
available, completed analysis result UUIDs. If more_results_available is set then more results are immediately

available.

malscape_service.api.views.analysis.get_completed _with_metadata (response_format)

Get the list of uuids of tasks that were completed within a given time frame along with additional metadata.
This allows to efficiently query the completion status of multiple previously submitted tasks in one call, without

requiring to poll for the status for individual tasks.

The main use-case for this method is to periodically request a list of UUIDs completed since the last time this

method was invoked, and then fetch each result with get_result () and any relevant analysis errors.

The format for date parameters is one of:
¢ date: ‘YYYY-MM-DD’
e datetime: ‘YYYY-MM-DD HH:MM:SS’
All times are in UTC.
URL
/analysis/get_completed_with_metadata[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)

2.3. Methods

29

Lastline Analyst APl Documentation, Release 2.0

» api_token: Lastline API token. (required)

o after: Request tasks completed after this time. (required)

 before: Request tasks completed before this time. (optional, default=<current timestamp>)
Error Codes

e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.

e ANALYSIS API_ PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_AUTHENTICATION_ REQUIRED: Credentials or session identifier missing.
Contents of successful response

e after: Start of considered time range.

before: End of considered time range. If no such value was specified, the API returns the current times-
tamp (which can be used if the local clock is skewed)

resume: The ‘after’ time to use for a subsequent get_completed call to resume collection of completed
tasks.

* more_results_available (optional): The API limits the number of tasks returned in a single result in some
situations. If this happened, this flag is set to ‘1’ and the caller must continue fetching completed-data.

« tasks: List of tasks completed in the specified time range with corresponding task UUIDs and scores with
additional task metadata. The fields in each mapping are as follows:

— task_uuid: The analyzed task’s uuid.
— score: The final score for the task after analysis is complete.

— insufficient_task_input_errors: If analysis was blocked due to insufficient input to the system
returns a list of error codes that describe where invalid input was provided. Error codes returned
can be any of:

% 1001: Failed to extract a file from an archive

% 1002: Failed to decrypt an archive due to an invalid password

+ 1003: Failed to decrypt sample due to an invalid password
Example

To periodically request a list of completed UUIDs, the following pattern can be used:

ret = analysis.get_completed _with_metadata (after="2020-12-05 14:00:39")
#ret contents will be similar to:
{u'data': {u'after': u'2012-12-05 14:00:39",
u'before': u'2012-12-07 00:25:49",
u'tasks': [
{
u'task_uuid': u'05243bb7443e4bba80a5890969102082",
u'score': 50,
u'insufficient_task_input_errors': [1001]
}I
{
u'task_uuid': u'a8ea86b5d0d84b4bb86£fedd785a9d903",
u'score': 29
}
1}
u'success': 1}

30 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

...walt some time...
analysis.get_completed_with_metadata (after=ret["data"] ["before"])
the method will respond with:

{u'data': {u'after': u'2020-12-07 00:25:49",
u'before': u'2020-12-07 00:27:49",

u'tasks': [
{
u'task_uuid': u'eb66b56f2cd4948c7ab314217e3bebcf2’,
u'score': 50,
u'insufficient_task_input_errors': [1004]
}

1}
u'success': 1}

Notes

While individual analysis reports (returned by get_results ()) specify the start and end time of their analy-
sis, they should be ignored for the purposes of this method. Only the values of the after and before fields in the
response contents should be considered.

If more_results_available is set, the before parameter contains the timestamp to be used for subsequent calls to
allow iterating through all available, completed analysis result UUIDs.

malscape_service.api.views.analysis.get_pending (response_format)
Get the list of uuids of pending tasks that were created within a given time frame.

The format for date parameters is one of:
e date: YYYY-MM-DD’
e datetime: ‘YYYY-MM-DD HH:MM:SS’
All times are in UTC.
URL
/analysis/get_pending[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
e key: Lastline API key. (required)
 api_token: Lastline API token. (required)
» after: Request pending tasks created after this time. (optional, default=<since epoch>)
* before: Request pending tasks created before this time. (optional, default=<current timestamp>)
Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API_AUTHENTICATION_ REQUIRED: Credentials or session identifier missing.

Contents of successful response

2.3. Methods 31

Lastline Analyst APl Documentation, Release 2.0

« after: Start of considered time range. If no such value was specified, the API returns the time created for

the first submission returned (or current timestamp if no submissions returned).

tamp (which can be used if the local clock is skewed)

* more_results_available (optional): The API limits the number of tasks returned in a single result in some
situations. If this happened, this flag is set to ‘1’ and the caller must continue fetching completed-data.

o tasks: List of task UUIDs of tasks completed in the specified time range as plain list.

Example

To periodically request a list of pending UUIDs, the following pattern can be used:

before: End of considered time range. If no such value was specified, the API returns the current times-

ret = analysis.get_pending()

ret contents will be similar to:
#{u'data': {u'after': u'2020-08-05 14:00:39"',

u'before': u'2020-08-07 00:25:49",

u'tasks': [u'05243bb7443e4bba80a5890969102082",

u'a8ea86b5d0d84b4bb86fedd785a9d903"'] },
u'success': 1}

...walt some time...

analysis.get_pending (after=ret["data"] ["resume"])

the method will respond with:
#{u'data': {u'after': u'2020-08-07 00:25:49"',

u'before': u'2020-08-07 00:27:49",
u'tasks': [u'e66b56f2cd4948c7ab314217e3bebcf2']},
u'success': 1}

Notes

The resume parameter contains the timestamp to be used for subsequent calls to allow iterating through all
available, pending analysis result UUIDs. If more_results_available is set then more results are immediately
available.

malscape_service.api.views.analysis.get_progress (response_format)

Get analysis progress for a task.

NOTE: Do not call this method to query if a task has completed or not. This method estimates the anal-
ysis progress on a scale of 0 to 100, thus providing more data than the client may need. The method
get_completed () allows to efficiently query for task completion of a large number of pending tasks in
parallel without polling for the status of individual tasks. If a client violates this protocol and too frequently
invokes the get_progress method, the client may be blocked from making further calls.

URL

/analysis/get_progress[. response_format]

response_format can be xml or json (defaults to json)

HTTP METHOD

GET or POST

GET/POST Parameters

* key: Lastline API key. (required)
¢ api_token: Lastline API token. (required)

32

Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

* uuid: Identifier of requested task. (required)

» allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_ INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response

» progress: Value between 0 and 100 indicating completion of the analysis.

e completed: 1 if the sample has completed, otherwise 0.

malscape_service.api.views.analysis.get_task_metadata (response_format)
Get information about a task by its UUID.

URL
/analysis/get_task_metadata[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
e key: Lastline API key. (required)
 api_token: Lastline API token. (required for some license types)
e uuid: Identifier of requested task. (required)

* allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_ INVALID UUID: uuid is not a valid uuid (as returned by submit_file () or
get_results()).

e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response
The available details highly depend on the type of task. Available data includes:
* task_uuid: (required) Identifier of the task.

* task_type: (optional) ‘file’ for tasks generated from a file submission, ‘url’ for tasks generated
from a URL submission.

* file_md5: (optional) MDS5 hash of the file for which the task was generated, if it was generated
from a file submission.

2.3. Methods 33

Lastline Analyst APl Documentation, Release 2.0

file_shal: (optional) SHAI1 hash of the file for which the task was generated, if it was generated
from a file submission.

file_sha256: (optional) SHA256 hash of the file for which the task was generated, if it was
generated from a file submission.

« file_mime_type: (optional) Mime-type of the file for which the task was generated, if it was
generated from a file submission.

filename: (optional) Name of the file that was sent during the file submission, if it was provided
during the submission.

* url: (optional) URL for which the task was generated, if it was generated from a URL submis-
sion.

* referer: (optional) Referer used for analysis, if the task was generated from a URL submission
and a referer was specified.

malscape_service.api.views.analysis.query_ file_hash (response_format)
Query if the file has been seen before.

NOTE: Other than submit_file (), this function will always return a completed analysis result, if one is
available. In contrast, submit_file () will verify if the submission should be reanalyzed to guarantee best
results. Reasons for reanalysis include the availability of new/updated detectors, updated meta-information, or
analysis report expiration.

URL
/analysis/query/file_hash[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
 api_token: Lastline API token. (required)
¢ hash_algorithm: Hash algorithm used in the query. One of ‘MD5’, ‘SHA1’, or ‘SHA256’. (required)

hash_block_size: Size of the block in bytes (beginning at the start of the file) on which the hash was
computed. NOTE: Do not submit the file-size as block-size to query for a hash on the entire file.
Instead, omit the parameter. (optional, default=<full file size>)

¢ hash_value: Value (in hex) of the hash (using ‘hash-algorithm’ on the first ‘hash-block-size’ bytes, re-
quired)

Error Codes
e ANALYSIS API INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API_INVALID HASH ALGORITHM. An invalid hash-algorithm has been provided.
e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response
e files_found: Number of files that matched the query.

« tasks: (optional) List of analysis tasks matching the query.

34 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

— file_mdS5: (optional) MDS5 of the (complete) file matching the query.
— file_shal: (optional) SHA1 of the (complete) file matching the query.
— file_sha256: (optional) SHA256 of the (complete) file matching the query.

task_uuid: Task UUID to the most recent analysis task of the file matching the query.

score: Score between 0 and 100 indicating maliciousness of the observed behavior (O=benign,
100=malicious).

insufficient_task_input_errors: If analysis was blocked due to insufficient input to the system,
returns a list of error codes that describe where invalid input was provided.

expires: The time after which the response is considered stale. The client may cache the returned
task for this submission up to this time. For any submission after this time, the API may decide
to return a new task.

malscape_service.api.views.analysis.is_blocked_file_hash (response_format)
Query if the file has been seen before and enough information has been gathered to consider the file as block-
able.

URL
/analysis/query/is_blocked_file_hash[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
¢ api_token: Lastline API token. (required for some license types)
 hash_algorithm: Hash algorithm used in the query. One of ‘MD5’, ‘SHA1’, or ‘SHA256’. (required)

* hash_block_size: Size of the block in bytes (beginning at the start of the file) on which the hash was
computed. NOTE: Do not submit the file-size as block-size to query for a hash on the entire file.
Instead, omit the parameter. (optional, default=<full file size>)

* hash_value: Value (in hex) of the hash (using ‘hash-algorithm’ on the first ‘hash-block-size’ bytes). (re-
quired)

Error Codes
e ANALYSIS API_ INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API_INVALID HASH ALGORITHM. An invalid hash-algorithm has been provided.
e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response
¢ decision:
One of
— FILE_UNKNOWN: The file is not known,
— BLOCK: The client should assume the file to be malicious,

— NOBLOCK: The client should not assume the file to be malicious.

2.3. Methods 35

Lastline Analyst APl Documentation, Release 2.0

NOTE: This does not indicate that the file is benign, it merely means that using the given
hash, there is no (or not enough) evidence to make a decision.

« file_md5: (optional) MDS5 of the (complete) file matching the query if the file is known.
« file_shal: (optional) SHA1 of the (complete) file matching the query if the file is known.
* file_sha256: (optional) SHA256 of the (complete) file matching the query if the file is known.

malscape_service.api.views.analysis.query_ task_artifact (response_format)
Query if a specific task artifact is available for download.

URL
/analysis/query_task_artifact[. response_format]

response_format can be raw, xml, or json (defaults to raw). For raw, the result is an HTTP file
download response.

HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
» api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)

o artifact_name: Identifier of task artifact. Most tasks allow to download the file that was submitted for
analysis - to query for this artifact, use artifact_name primary_analysis_subject. (required)

* allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_ PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API_AUTHENTICATION_ REQUIRED: Credentials or session identifier missing.
Contents of successful response
o available: 1 if the artifact is available, otherwise 0.

* task_uuid: (optional) Task UUID (see get_result_artifact ()) for which the artifact can be
downloaded (if available is set to 1).

* report_uuid: (optional) Analysis report UUID (see get_result_artifact () function) for which
the artifact can be downloaded (if available is set to 1).

« artifact_name: (optional) Name under which the artifact can be downloaded (see
get_result_artirfact () function, if available is set to 1).

malscape_service.api.views.analysis.get_network_iocs (response_format)
Get the network IoC data for an analysis task.

URL

36 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

/analysis/ioc/get_network_iocs|. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET
GET Parameters
* key: Lastline API key. (required)
* api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API NO RESULT FOUND: No results are yet available for requested task
e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response
* task_uuid: The task uuid sent in the request

* network_iocs: A list of network iocs extracted from pcaps. Each list entry has the following
keys:

— report_uuid: Analysis report that generated this PCAP data
— pcap_info_version: The version number of the pcap data

— pcap_info: The pcap data with the network ioc information. For more information,
please look at the explanation under Contents of Pcap Info

Contents of Pcap Info
¢ ioc_list List of information on specific IOCs
— ioc_type Type of IoC being reported (hostlIPI...)
— value Value of the associated IoC
— tags List of string tags on the specific IoC value

malscape_service.api.views.analysis.get_ioc_metadata (response_format)
Get information about an IOC by its UUID.

URL
/analysis/ioc/get_ioc_metadata[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters

2.3. Methods 37

Lastline Analyst APl Documentation, Release 2.0

* key: Lastline API key. (required)
* api_token: Lastline API token. (required for some license types)

* ioc_uuid: Identifier of IOC. (required)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,

default=1)

Error Codes

e ANALYSIS API_ INVALID CREDENTIALS: Provided key and api_token are not valid credentials.

e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API INVALID UUID: ioc_uuid is mnot a valid wuuid (as returned
create_ioc_from result () or get_results()).

e ANALYSIS API_NO_RESULT FOUND: No results are yet available for requested IOC.

e ANALYSIS API TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.

e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response

The available details highly depend on the type of IOC or the origin of the IOC (which system
triggered its generation). Available data includes:

¢ ioc_uuid: (required) Identifier of the IOC.

* task_uuid: (optional) Identifier of task for which the IOC was generated, if the IOC was gen-
erated from a single analysis task.

* report_uuid: (optional) Identifier of the report the IOC was generated for, if the IOC was
generated from a single analysis report.

* report_version: (optional) Version name of the IOC report that this IOC UUID is referring to.

* task_score: (optional) Score associated with the analysis task, if the IOC was generated from
a single analysis task, as returned by get_results ().

* file_mdS5: (optional) MD5 hash of the file for which the IOC was extracted, if it was generated
from a single file.

« file_shal: (optional) SHA1 hash of the file for which the IOC was extracted, if it was generated
from a single file.

* file_mime_type: (optional) Mime-type of the file for which the IOC was extracted, if it was
generated from a single file.

 report_env: (optional) Analysis environment description (such as the operating system) on
which data for the IOC was extracted, if it was extracted from a single analysis report.

malscape_service.api.views.analysis.get_ioc_report (response_format)

Get an IOC by its UUID.

NOTE: This function does not define the format in which the results are returned, as this is mandated by the

IOC-UUID already.
URL
fioc/get_ioc_report
HTTP METHOD
GET or POST

38

Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

GET/POST Parameters
e key: Lastline API key. (required)
 api_token: Lastline API token. (required for some license types)
e ioc_uuid: Identifier of IOC. (required)
Error Codes
See function get_results ()
Contents of successful response
See function get_results ()

malscape_service.api.views.analysis.create_ioc_from result (response_format)
Create an IOC based on an analysis result.

URL
/analysis/ioc/create_ioc_from_result[. response_format]
response_format can be xml or json (defaults to json).
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
* api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)
* report_version: Type of IOC report to create. (required)
* report_uuid: Identifier of the requested report. (required)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API_NO_RESULT FOUND: No results are available for requested task.
e ANALYSIS API_TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.
e ANALYSIS API INVALID REPORT VERSION: Invalid report version.

e ANALYSIS API_NO _IOC EXTRACTABLE: No IOCs can be extracted from the given task. See error-
code description for details.

e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response

e See get__ioc _metadata ().

2.3. Methods 39

Lastline Analyst APl Documentation, Release 2.0

malscape_service.api.views.analysis.get_api_utc_timestamp (response_format)
Get the current UTC timestamp to be used in the API on calls that can require the current timestamp, such as
get_completed for example

URL
/analysis/get_api_utc_timestamp[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET
GET Parameters
e key: Lastline API key. (required)
* api_token: Lastline API token. (required)
Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API_AUTHENTICATION_ REQUIRED: Credentials or session identifier missing.
Contents of successful response
* timestamp: The current timestamp for the API

malscape_service.api.views.analysis.get_analysis_tags (response_format)
Get the analysis tags for an analysis task.

URL
/analysis/get_analysis_tags[. response_format|
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
 api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_ INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url ()).

e ANALYSIS API NO_RESULT FOUND: No results are yet available for requested task
e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.

Contents of successful response

40 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

* task_uuid: The task uuid sent in the request
» analysis_tags: A list of details about each tag in the given result. Each list entry has the following keys:
— format: Format of the tag.
— data: Content of the tag data and score
+ type : source of the tag. format = typed_tag , value : tag value.

malscape_service.api.views.analysis.get_child_tasks_recursively (response_format)
Get a list of child tasks of the given task UUID recursively

URL
/analysis/get_child_tasks_recursively[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
GET/POST Parameters
* key: Lastline API key. (required)
» api_token: Lastline API token. (required for some license types)
e uuid: Identifier of task. (required)

« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (optional,
default=1)

Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.

e ANALYSIS API_INVALID UUID: uuid is not a valid uuid (as returned by submit_file () or
get_results()).

e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
Contents of successful response

e task_uuid: The task uuid sent in the request

* child_tasks: A mapping between the child task UUID and child task information

— depth: The depth of the child task. For example, if the depth is 1, it means the child task is the
direct child task of the submitted task UUID. If the depth is 2, it means the child task is the
grandchild task (the child task of the child task) of the submitted task UUID

malscape_service.api.views.analysis.export_report (response_format)
Export a report or a combination of reports for a task.

Note: This method is currently available only to customers using the hosted, software-as-a-service API deploy-
ment.

This method allows exporting analysis results. This export works asynchronously, and a call to this
method triggers the generation of a report. On a successful request, this method will return a unique
identifier for the report along with an event id that can be used to get report completion status using the
API call get_completed exported_reports (). Once a report identifier has successfully been re-
turned by get_completed exported_reports (), the report itself can be obtained with the API call
get_exported_report ().

2.3. Methods a1

Lastline Analyst APl Documentation, Release 2.0

URL
/analysis/export_report[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
POST
POST Parameters
* key: Lastline API key. (required)
» api_token: Lastline API token. (required)
e uuid: Identifier of requested task. (required)
 report_type: The kind of report to export. (required)
— Supported types:
* OVERVIEW: The exported report contains an overview of the analysis.
* ALL: The exported report contains an overview of the analysis and all reports for the task.

FULL: The exported report contains an overview of the analysis and all reports for the task
and all child tasks (recursively).

e report_format: The format of the generated report. (optional, default="PDF”)
— Supported formats:
x PDF
Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API AUTHENTICATION REQUIRED: Credentials or session identifier missing.

e ANALYSIS API INVALID UUID: task_uuid is not a valid uuid (as returned by submit_file () or
submit_url()).

e ANALYSIS API NO_RESULT FOUND: No results are yet available for requested task

e ANALYSIS API_TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.
Contents of successful response

* exported_report_uuid: Unique identifier for the report.

¢ resume_after_report_uuid: An event id for use with get_completed exported reports ().If
omitted, then omit the value when calling get_completed_exported_reports ().

malscape_service.api.views.analysis.get_completed_exported_reports (response_format)
Get a list of exported reports that are available for download.

Note: This method is currently available only to customers using the hosted, software-as-a-service API deploy-
ment.

URL
/analysis/get_completed_exported_reports[. response_format)
response_format can be xml or json (defaults to json)

HTTP METHOD

42 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

GET
GET Parameters
* key: Lastline API key. (required)
* api_token: Lastline API token. (required for some license types)

e resume_after_report_uuid: The last consumed report UUID. To enumerate reports ready for download,
specify the last UUID that the client processed; the API will return UUIDs of new reports that were
make available after the given one. If not provided, will return all stored reports. If the API returns no
reports then use the same resume_after_report_uuid for the following call to the API. (optional)

Error Codes
e ANALYSIS API_INVALID CREDENTIALS: Provided key and api_token are not valid credentials.
e ANALYSIS API_ PERMISSION DENIED: Access to service functionality has been denied.
e ANALYSIS API_AUTHENTICATION REQUIRED: Credentials or session identifier missing.
e ANALYSIS API_INVALID UUID: The UUID provided in resume_after_report_uuid is invalid.
Contents of successful response

« available_reports: A list of reports with the following info, ordered by report completion time. - ex-
ported_report_uuid:

The UUID of the report

— task_uuid: UUID of the task associated with this report
— export_timestamp: Timestamp of the creation of the exported report.
— export_error: (optional) An error message explaining why a report could not be exported.
malscape_service.api.views.analysis.get_exported_ report ()
Get a completed exported report.

Note: This method is currently available only to customers using the hosted, software-as-a-service API deploy-
ment.

URL
/analysis/get_exported_report
HTTP METHOD
GET
GET Parameters
* key: Lastline API key. (required)
* api_token: Lastline API token. (required for some license types)
* exported_report_uuid: The uuid of the report to receive (required).

* cdn: Boolean (specified as 1 or 0). If True, may redirect to CDN to retrieve the exported report. If False,
will directly return the exported report (optional, default is 1).

Error Codes

Other than most API calls, this function serves raw HTTP responses. The API will use standard
HTTP error codes:

* 401 - Unauthorized: Access to service functionality has been denied.

2.3. Methods 43

Lastline Analyst APl Documentation, Release 2.0

* 404 - Not Found: The requested artifact is not available.
* 422 - Unprocessable Entity: The provided report UUID is not valid.
Contents of successful response

Other than most API calls, this function serves raw HTTP responses containing the exported report
content.

malscape_service.api.views.analysis.is_risky_ analysis_artifact (response_format)
Determine if artifact associated with or generated by an analysis result could be malicious.

URL
/analysis/is_risky_analysis_artifact[. response_format]
response_format can be xml or json (defaults to json)
HTTP METHOD
GET

GET Parameters
* key: Lastline API key. (required)
 api_token: Lastline API token. (required)

* artifact_uuid: Identifier of requested task artifact in the form of <report-UUID>:<artifact-name>.
(required)

* uuid: Identifier of requested task used to redirect to the correct datacenter. (optional)
« allow_datacenter_redirect: If set to False, redirection to other datacenters will be prevented. (op-
tional, default=1)
Error Codes

e ANALYSIS API INVALID ARTIFACT UUID: Provided artifact uuid contains an invalid artifact
name and/or report uuid.

e ANALYSIS API_TEMPORARILY UNAVAILABLE: Service is temporarily unavailable.

Contents of successful response
 is_risky: ‘1’ if the artifact could be malicious, ‘0’ if safe.
malscape_service.api.views.authentication.login (response_format)
Authenticate with the APL.
URL
/authentication/login[. response_format|
response_format can be xml or json (defaults to json)
HTTP METHOD
POST
POST Parameters
* key: Lastline license key.
 api_token: Lastline API-token. (optional, but required for many APIs)

Contents of successful response

44 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

“success”
Error Codes
e ANALYSIS_API_AUTHENTICATION_REQUIRED: Credentials or session identifier missing.
e ANALYSIS_API_INVALID_CREDENTIALS: Invalid pair of ‘key’/’api_token’ were provided.

e ANALYSIS_API_PERMISSION_DENIED: Credentials are valid, but current user have no rights to call
this APL.

malscape_service.api.views.authentication.ping (response_format)
Validate authenticated session.

URL
/authentication/ping[. response_format|
response_format can be xml or json (defaults to json)
HTTP METHOD
GET or POST
Contents of successful response
“pong”
Error Codes
e ANALYSIS_API_AUTHENTICATION_REQUIRED: Credentials or session identifier missing.
e ANALYSIS_API_INVALID_CREDENTIALS: Invalid pair of ‘key’/’api_token’ were provided.

* ANALYSIS_API_PERMISSION_DENIED: Credentials are valid, but current user have no rights to call
this API.

2.4 Error Codes

malscape_service.api.views.analysis.ANALYSIS_ API_FILE_UPLOAD_REQUIRED
Error code 101: Returned when submitting a file using the file’s hash, but the file content is required for per-
forming an analysis. Submit the actual file instead - see submit_file () for details.

Note: Even if the file content has been uploaded for analysis previously, it is possible that this error is returned.

Note: The optimized Workflow of submitting files for analysis suggests submitting a file by the file’s MDS5 and
SHAT1 hashes first. This can avoid transmitting large files when an upload may not be required. If this error
is returned and the client repeats the submission to upload the file content, the first submission is not counted
against a client’s submission quota.

malscape_service.api.views.analysis.ANALYSIS API_FILE_NOT AVAILABLE
See ANALYSIS API_FILE UPLOAD_ REQUIRED

malscape_service.api.views.analysis.ANALYSIS_API_INVALID CREDENTIALS
Error code 104: No valid API credentials were provided. All requests to the Lastline Analyst API require a valid
API key and API token.

2.4. Error Codes 45

Lastline Analyst APl Documentation, Release 2.0

malscape_service.api.views.analysis.ANALYSIS API_INVALID_UUID
Error code 105: Returned when requesting results for a task, if the provided UUID is not valid. Make sure that
the UUID parameter is being provided as returned by submit_file () or submit_url ()

malscape_service.api.views.analysis.ANALYSIS_API_NO_RESULT_ FOUND
Error code 106: Returned when requesting results for a task, if the results are not yet available. Please try again
later, or use the get__completed () API function to obtain a list of tasks that have already completed.

malscape_service.api.views.analysis.ANALYSIS_API_TEMPORARILY_ UNAVAILABLE
Error code 107: API functionality is temporarily unavailable. Please try again later.

malscape_service.api.views.analysis.ANALYSIS API_PERMISSION_DENIED
Error code 108: Access to service functionality has been denied.

malscape_service.api.views.analysis.ANALYSIS_API_FILE_TOO_LARGE
Error code 109: When submitting by file: Provided file exceeds upload limit. In the default configuration, the
upload-limit is 10MB.

malscape_service.api.views.analysis.ANALYSIS_API_INVALID_D METADATA
Error code 112: Invalid download metadata was submitted.

malscape_service.api.views.analysis.ANALYSIS_API_INVALID FILE_TYPE
Error code 113: When submitting by file: Provided file-type is not supported by any available analysis engine.

malscape_service.api.views.analysis.ANALYSIS API_INVALID_ARTIFACT UUID
Error code 114: The requested artifact UUID was invalid or the requested artifact is no longer available (e.g.,
data retention policies caused it to be deleted).

malscape_service.api.views.analysis.ANALYSIS API_SUBMISSION_LIMIT EXCEEDED
Error code 115: The license used during a submission is limited to a certain maximum number of submissions
per day. This limit has been exceeded.

malscape_service.api.views.analysis.ANALYSIS_API_INVALID HASH_ ALGORITHM
Error code 116: The given algorithm is either invalid or unknown.

malscape_service.api.views.analysis.ANALYSIS API_INVALID_URL
Error code 117: An invalid URL or refer(r)er was submitted.

malscape_service.api.views.analysis.ANALYSIS_API_INVALID REPORT_VERSION
Error code 118: The requested report version is invalid.

malscape_service.api.views.analysis.ANALYSIS API_ FILE_EXTRACTION_FAILED
Error code 119: The submitted file is an archive and the API was unable to extract the contained files. This can
be due to an incorrectly specified decryption password in submit_file ().

malscape_service.api.views.analysis.ANALYSIS_API_NO_IOC_EXTRACTABLE
Error code 120: The requested report cannot be expressed as an IOC in the requested format. Typically this
happens when the analysis report does not contain sufficient actions to represent the behavior in a meaningful
IOC report, or the set of actions exported as IOC report would cause too many false positives. It is also possible
that the requested IOC report format does not allow expressing the observed behavior accurately, for example
when an observable cannot be described in the chosen IOC format.

malscape_service.api.views.analysis.ANALYSIS_ API_CHILD_ TASK_CHAIN_TOO_DEEP
Error code 121: Internal, do not use. The submission was rejected due to generation of overly long chains of
analysis child tasks.

malscape_service.api.views.analysis.ANALYSIS_ API_AUTHENTICATION_ REQUIRED
Error code 122: The request does not contain the required credentials and no valid session identifier was pro-
vided (or the session has expired).

malscape_service.api.views.analysis.ANALYSIS_API_DATA_NO_LONGER_AVAILABLE
Error code 123: The requested data is no longer available (e.g., data retention policies caused it to be deleted).

46 Chapter 2. API Reference

Lastline Analyst APl Documentation, Release 2.0

2.5 Submission Metadata

While many of the parameters for submit_file () and submit_url () are technically optional, it is highly
recommended to provide these values to guarantee the most accurate analysis results.

2.5.1 Filename

The Lastline analysis system (including the API) uses the content of an uploaded file to determine the file’s type.
However, for some files, the file content can be ambiguous and the intended way to analyze a file cannot be determined
reliably from the content alone.

Consider the case of examining encrypted files, such as archives, PDFs, or Microsoft Office documents: much of the
actual content used for determining the type is not available - either because a password or passphrase is required to
access the content, or because the file format is proprietary. As a result, the file type detection needs to incorporate the
filename in the decision logic to determine how (and if) the file should be analyzed.

Or consider the following example:

function calculate (valuel, value2) {
return valuel + value;

}

By looking at the file content alone, it is not straight-forward to decide what programming or scripting language this
is. Therefore, it is not clear how to run, open, or analyze the given file:

* it could be a JavaScript file meant for running in a browser, or

* it could be a JavaScript file to be executed via JScript.exe on a Microsoft Windows host, or
¢ it could be Powershell script for Microsoft Windows, or

* it could be C or C++ depending on the context in which it is compiled, or

* it could simply be a text file that resembles code.

The analysis system attempts to find the best fit for a given file, and if a file could be interpreted differently, the file
is executed in multiple ways. If there are too many options and the system cannot find a reasonable set of candidates,
the file may be rejected. By using the filename in addition to the file content, the analysis system can make a better
decision and more accurately analyze the file.

Providing the filename is not only important for file-type detection, it may also affect how a file behaves: The Microsoft
Windows operating system, for example, may execute programs differently depending on the name of the file, as the
OS makes the UI and system interact with the user differently if the filename suggests that the program is an installer
(just as one example).

2.5.2 File Origin

Information on the origin of a file, such as provided via download_host or download_path may improve the classi-
fication accuracy. By using such metadata, the system can track reputation information and can identify reputable
programs more reliably.

2.6 Web-Portal Integration

The submit_file () and submit_url () allow specifying an optional push_to_portal_account parameter for
forwarding successful API submissions to the web-portal Submission history tab.

2.5. Submission Metadata 47

Lastline Analyst APl Documentation, Release 2.0

This Submission history tab is not designed to store large numbers of submissions. As a result, it is strongly discour-
aged to use/set the parameter when doing automated or bulk submissions using this API. Populating the Submission
history with excessive data can negatively impact the user experience of the web-portal. The integration with the portal
is currently considered for deprecation in a future version.

48 Chapter 2. API Reference

CHAPTER
THREE

ANALYSIS RESULTS

The Analyst API returns analysis results via function get_results () and a task_uuid returned by a previous call
to submit_file () or submit_url ().

Every response from get_results () contains a number of mandatory fields providing submission information,
analysis results, and a classification of the submitted artifact.

Additionally, each response contains optional information, depending on the type of submission (file or URL submis-
sion), analysis outcome, and analysis verbosity settings.

Contents of response
 task_uuid. Type: Hexadecimal string.
Example: 7065a3ba0c729ad5981a1e1072df710d.
Unique identifier for this analysis submission.
e score. Type: Integer.
Example: 75.

Score between 0 and 100 indicating maliciousness of the observed behavior (0=benign, 100=malicious).
This allows the client to choose which artifacts to consider malicious according to its own security policies.
Lastline standard/best-practice is to consider any artifact with

— score < 30 to be benign,
— score >= 30 and score < 70 to be suspicious / a nuisance, and
— score >= 70 to be malicious.
* submission. Type: Date-Time.
Example: 2013-10-09 12:12:12.
Timestamp of the submission that triggered the initial analysis.
¢ last_submission_timestamp (optional). Type: Date-Time.
Example: 2013-10-09 12:12:12.
Timestamp of the most recent submission that returned this analysis task.
* analysis_subject. Type: Dictionary.
— url: (optional). Type: String.
Example: “http://www.example.com/”.

URL submitted for analysis (URL analysis only).

49

http://www.example.com/

Lastline Analyst APl Documentation, Release 2.0

referer: (optional). Type: String.
Example: “http://www.referer.com/”.

Referer/Referrer for analysis (URL analysis only).

md5: (optional). Type: String.
Example: “c9d2242bbaca823b80916fec27e9f2bb”.
File MDS5 hash (file analysis only).

shal: (optional). Type: String.
Example: “c9d2242bb263483837456fec27e9f2bb”.
File SHA1 hash (file analysis only).

mime_type: (optional). Type: String.
Example: “application/pdf”.
File mime-type (file analysis only).
Additional response contents for successful analysis
» malicious_activity. (optional). Type: List of strings.
Example: “Typel: Valuel”, “Type2: Value2”.

Subset of the behavior report identifying malicious behavior. If features outside the observed behavior
contribute to the maliciousness score or no malicious behavior was detected during analysis, this field will
not be available.

* threat. (optional). Type: String.
Example: “Zeus”.

A threat classification. If the analysis subject was classified as benign or does not belong to a known threat
family, this field will not be available.

* threat_class. (optional). Type: String.
Example: “Command & Control”.

A threat-class classification. If the analysis subject was classified as benign or does not belong to a known
threat class family, this field will not be available.

* report. (optional). Type: See Analysis Report Format.

Analysis report for submitted resource. If an analysis subjects fails be analyzed but can still be classified
using other information, the response will not contain this field.

child_tasks. (optional). Type: List of child tasks. See Child Tasks.
* reports. (optional). Type: List of dictionaries.
— report_uuid: Type: See report uuid.
Analysis report UUID.
— relevance: Type: Integer.
Example: 0.

Number (0-1) on how relevant this report is when compared to other analysis reports available for
this result.

50 Chapter 3. Analysis Results

http://www.referer.com/

Lastline Analyst APl Documentation, Release 2.0

— description (optional): Type: String.

Example:

“Dynamic analysis on Microsoft Windows 7.

A short description of the analysis report, such as the analysis environment. For details, see
Report Descriptions.

— report_versions (optional): Type: List of Strings.

Example:

‘1I-int-win’, ‘ll-win-timeline-based’.

A list of available report versions. Each report versions represents analysis information differ-
ently, focusing on different aspects of the analysis. Not all report versions apply to all reports.
For a list of report versions, see report versions.

Additional response contents for failed analysis

* errors. Type: List of strings.

Example: “Errorl”, “Error2”.

A list of error messages explaining why a submitted artifact could not be processed.

3.1 Analysis Report Format

The Analyst API uses different internal analysis engines to analyze a submission of a supported type. The analysis
engine determines the fields in the report and the report’s format.

Report contents

e uuid. Type: Hexadecimal string.

Example: 2fbffe68406f500f3e3ef9c:ba675ccOey-qSAKdW1_rEA.

Unique identifier for the analysis report. This value can be used to retrieve result artifacts or analysis
metadata (see get_result_artifact ()).

* format. Type: Dictionary.

— name. Type: String.

Example:
Example:
Example:
Example:
Example:
Example:
Example:

Example:

“ll-int-win”.
“ll-int-osx”".
“lI-win-timeline-based”.
“ll-osx-timeline-based”.
“ll-int-win-doc”.
“ll-int-apk”.

“ll-web”.

“ll-doc”.

Format of the analysis report. This value can be used to determine the expected values in addition
to uuid and format. For details on each report format, see Report Format ll-int-win, Report

Format lI-

int-osx, Report Format ll-int-win-doc, Report Format ll-int-apk, Report Format ll-int-

archive, Report Format ll-web, Report Format ll-static, Report Format ll-ioc-json, Report Format

ll-win-timeline-based, Report Format ll-osx-timeline-based, Report Format ll-pcap, and Report
Format ll-flash, Report Format ll-doc.

3.1. Analysis Report Format 51

Lastline Analyst APl Documentation, Release 2.0

Note: Reports in format /l-win-timeline-thread-based are identical to reports in format //-win-
timeline-based. The latter is merely a backwards-compatible naming for the former.

— major_version. Type: Integer.

Example: 1.

Major part of the report version with format <major>.<minor>.<build>.
— minor_version. Type: Integer.

Example: 1.

Minor part of the report version with format <major>.<minor>.<build>.
— build_version. Type: Integer.

Example: 0.

Build part of the report version with format <major>.<minor>.<build>.

3.2 Report Format

Some components of an analysis report apply to multiple report formats. Each individual report format can extend this
information with additional data, but follows the basic concepts described below.

Examples of such shared components is are the representation of analysis subjects or file metadata.

3.2.1 Analysis Subject Format
The analysis engine will monitor all analysis subjects, such as the originally started program and all child processes or
processes that a monitored program interacts with, and then list any security relevant data.
Analysis subject contents
¢ overview. Type: Dictionary.
Overview of the analysis subject.
— id. Type: Integer.
Example: 2.
Identifier of the analysis subject within the analysis report.
— parent_id: (optional). Type: Integer.
Example: 2.

Identifier that indicates which analysis subject is responsible for the execution of the current
analysis subject; If not present, it indicates that the monitoring of the current analysis subject did
not depend on any other analysis subject (for example, the originally started program does not
include this field). If present, it identifies an analysis subject within the report. For example, if
parent_id is equal to 2, it means that the current analysis subject was monitored because it was
started or interacted with the analysis subject whose identifier (as specified by the id field) has
value 2.

— ext_info: (optional). Type: File-Info; see Static File Information.

Static information on the analyzed file.

52 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

3.2.2 Static File Information
The analysis engine extracts static file information for most files manipulated during the analysis run and associates
this information with all files in the report.
File information contents
* md5: (optional). Type: Hexadecimal string.
Example: “748cb82987899a164c2f6e7985fffecS”.
A md5 hash of a file content.
* shal: (optional). Type: Hexadecimal string.
Example: “066e791be6fb28063fc643cea658bf70d193b895.
A shal hash of a file content.
« file_info: (optional). Type: String.
Example: “MS Windows shortcut”.
A text description of file type.
* size: (optional). Type: Integer.
Example: 1233.
A file size in bytes.

3.2.3 Analysis Metadata Format

During the analysis run, the analysis engine extracts the metadata that is available for download.
Metadata contents
* metadata_type. Type: String.
Example: “screenshot”.
Example: “traffic_capture”.
Example: “generated_file”.
Example: “memory_dump”.
Example: “process_dump”.
Example: “analysis_subject”.
Example: “extracted_file”.
Type of metadata.
¢ delete_date: (optional). Type: Date-Time.
Example: “2013-10-05 14:22:02”.

Analysis metadata is deleted according to data-retention policies. If a metadata file becomes unavailable,
this field contains the delete date.

« analysis_subject_id: (optional). Type: Integer.
Example: 2.

Index of the analysis subject that metadata is associated with. Applies to metadata_types “memory_dump”,
“analysis_subject”, and “process_dump”.

3.2. Report Format 53

Lastline Analyst APl Documentation, Release 2.0

* yara_signature_hits: (optional). Type: List of strings.
Example: “SignatureNamel”, “SignatureName2”

39 <

Yara signatures that matched on the analysis metadata. Applies to metadata_types “memory_dump”, “gen-
erated_file”, “analysis_subject”, and “process_dump”.

* description: (optional). Type: String.
Example: “Memory snapshot of 32-bit process”

CEINT3

Short description of the analysis metadata. Applies to metadata_types “memory_dump”, “generated_file”,
“analysis_subject”, and “process_dump”.

* embedded_shellcode: (optional). Type: Boolean.

True if the buffer contains shellcode. Applies to metadata_type “memory_dump”.
 ext_info: (optional). Type: File-Info; see Static File Information.

Static file information. Applies to metadata_type “analysis_subject”.
 timestamp: (optional). Type: Integer.

Example: 50.

Number of seconds after start of analysis run at which the screenshot was taken. Applies to metadata_type
“screenshot”.

3.2.4 Network Traffic Format

During the analysis run, the analysis engine extracts information about network connections observed during the
analysis. The report will distinguish between different protocols and extract protocol-specific information.

Examples for supported protocols are TCP, UDP, HTTP, or SMTP.
Network connection contents
Network connections using a protocol that is not parsed into a more specific protocol type.
e protocol: (optional). Type: String.
Example: “TCP”.
Name of highest-level protocol recognized.
e src_ip. Type: IP address.
Example: “192.168.0.2”.
Source IP address of the connection.
* src_port: (optional). Type: Integer.
Example: 1036.
Source port of the connection, applies only to protocols using ports (such as “TCP” or “UDP”).
e dst_ip. Type: IP address.
Example: “2.2.2.2”.

Destination IP address of the connection.

54 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

* dst_port: (optional). Type: Integer.
Example: 80.

Destination port of the connection, applies only to protocols using ports (such as “TCP” or
“UDP”).

* type. Type: String.
Example: “outgoing”.
Direction of the connection establishment. “incoming” or “listening”.
* conversation: (optional). Type: List of communication tuples; see below.
Example: (“messagel”,”answerl”),(*”, “answer2”).

List of tuples containing incoming and outgoing message data.
HTTP connection contents

Network connections identified to use the HTTP protocol. This type extends the nerwork connection type.
e url. Type: String.
Example: “GET /search?q=0 HTTP/1.0”.
Request line sent to server.
* response_headers: (optional). Type: Key-value storage.
Example: “type”="HTTP Response”.
Each element corresponds to an HTTP header (name and value) sent to the server.
* response_protocol_version: (optional). Type: String.
Example: “1.1”.
Protocol version used in the server’s response.
* response_status: (optional). Type: String.
Example: “200”.

HTTP status code returned by the server.

IRC connection contents

Network connections identified to use the IRC protocol. This type extends the network connection type.
¢ irc_channel: (optional). Type: String.
Example: “channell”.
IRC channel used in the communication.
* channel_password: (optional). Type: String.
Example: “channel_password1”.
Channel-password used for authenticating to the IRC channel.
e irc_user: (optional). Type: String.
Example: “userl”.

User used for authenticating the communication.

3.2. Report Format 55

Lastline Analyst APl Documentation, Release 2.0

e irc_password: (optional). Type: String.

Example: “password1”.

Password used for authenticating the communication.
e irc_nick: (optional). Type: String.

Example: “nickl1”.

IRC nick(name) used in the communication.

FTP connection contents

Network connections identified to use the FTP protocol. This type extends the network connection type.

o ftp_login: (optional). Type: String.
Example: “credentials1”.

FTP credentials used in the communication.

DNS query contents

* hostname. Type: String.
Example: “www.example.com”.
Name of host in query.

* results: (optional). Type: List of IP addresses.
Example: “1.1.1.17,2.2.2.2”.
IP address returned in result (if any).

* response_flags: (optional). Type: List of strings.
Example: “nxdomain”.

DNS flags set in the response.

SMTP connection contents

Network connections identified to use the SMTP protocol. This type extends the nerwork connection type.

* email_subject: (optional). Type: String.

Example: “Email Subject”.

Email subject of a sent message in the SMTP conversation.
* sender: (optional). Type: String.

Example: “john.doe @example.com”.

Sender email address of a sent message in the SMTP conversation.
* recipients: (optional). Type: String.

Example: “Jane <jane.doe @example.com>”.

Sender recipient addresses of a sent message in the SMTP conversation.
Address scan contents

Network address scans.

56 Chapter 3

. Analysis Results

mailto:john.doe@example.com
mailto:jane.doe@example.com

Lastline Analyst APl Documentation, Release 2.0

* subnet: (optional). Type: String.
Example: “192.168.0.0/16.
Network targeted by the network address scan.
* remote_port: (optional). Type: Integer.
Example: 80.

Destination port used in the network address scan.

3.3 Report Format /l-int-win

This analysis report format applies to a dynamic analysis run on a Microsoft Windows platform.

In addition to the report fields that all report formats share (see Analysis Report Format), the report contains a number
of different fields with details about the analysis run.

Report contents
* remarks: (optional). Type: Dictionary.
— info (optional). Type: List of strings.
Example: “Textl”, Text2”.
A list of information strings concerning the analysis run.
— warning (optional). Type: List of strings.
Example: “Textl”, Text2”.
A list of warning strings concerning the analysis run.
* overview. Type: Dictionary.
— analysis_engine. Type: String.
Example: “LLama - WindowsXP”.
Name of the analysis engine used for generating the result.
— analysis_engine_version. Type: String.
Example: “1.2.4”.
Version of the analysis engine used for generating the result.
— analysis_start. Type: Date-Time.
Example: “2013-10-05 14:21:01.928894”.
Start timestamp of the analysis run.
— analysis_end. Type: Date-Time.
Example: “2013-10-05 14:22:02.935794”.
End timestamp of the analysis run.
« analysis_subjects. Type: List of analysis subjects; see Windows Analysis Subject Format.

A list of programs monitored during the analysis run.

3.3. Report Format /l-int-win 57

Lastline Analyst APl Documentation, Release 2.0

 analysis_metadata: (optional). Type: List of analysis metadata; see Windows Analysis Metadata Format.

A list of artifacts generated during the analysis run. See get_result_artifact () for retrieving this
metadata.

* randomized_registry_values: (optional). Type: List of registry keys; see registry_reads.

A list of Microsoft Windows Registry values that the analysis engine randomized during the analysis run
to avoid detection by the analysis subject. For the format of each value, refer to registry_reads.

e url_summary: (optional). Type: List of strings.
Example: “http://www.examplel.com”,’http://www.example2.com”.

Network summary of contacted URLs during analysis run.

3.3.1 Windows Analysis Subject Format
The analysis engine will monitor all analysis subjects, such as the originally started program and all child processes or
processes that a monitored program interacts with, and then list any security relevant data.
This type extends the Analysis Subject Format type with additional information on Windows analysis subjects.
Analysis subject contents

* overview. Type: Dictionary.

Overview of the analysis subject. In addition to the base format contents, the following elements
are extracted:

— process. Type: Process; see Windows Process.
Information on the Windows process.
— ext_info: (optional). Type: File-Info; see Static File Information.
Static information on the process image.
¢ console_output: (optional). Type: Dictionary.
Console output of the program.
— stdout: (optional). Type: String.
Example: “text written to stdout”.
Program output written to default console.
— stderr: (optional). Type: String.
Example: “text written to error console”.
Program output written to error console.
* opened_windows: (optional). Type: List of GUI-windows; see below.
A list of GUI windows opened by the analysis subject.
— title: Type: String.
Example: “Documents and Settings”.

Window title content.

58 Chapter 3. Analysis Results

http://www.example1.com
http://www.example2.com

Lastline Analyst APl Documentation, Release 2.0

— text: Type: String.
Example: “FolderView”.
Window text content.
* loaded_libraries: (optional). Type: List of libraries; see below.
List of library files loaded by the analysis subject.
— filename: Type: String.
Example: “C:\windows\syswow64\ole32.dII”.
Path to the library loaded by the analysis subject.
* registry_reads: (optional). Type: List of registry keys; see below.
A list of registry keys read by the analysis subject.
— key. Type: String.

Example: “HKLM\SOFTWARE\MICROSOFT\WINDOWS
NT\CURRENTVERSION\DRIVERS32”.

A registry key.
— value: (optional). Type: String.
Example: “wave9”.
A registry value.
— data: (optional). Type: String or Integer.
Example: 1, “mso.dll”.
A data of registry value.
* registry_writes: (optional). Type: List of registry keys; see registry_reads.
A list of registry keys written by the analysis subject.
* registry_deletions: (optional). Type: List of registry keys; see registry_reads.
A list of registry keys deleted by the analysis subject.
e file_reads: (optional). Type: List of files; see below.
A list of files read by the analysis subject
— filename. Type: String.
Example: “desktop.ini”.
A file name. Could be absolute or relative path.
— abs_path: (optional). Type: String.
Example: “C:\Users\desktop.ini”.
An absolute path the file.
— ext_info: (optional). Type: File-Info; see Static File Information.
Static file information.
« file_writes: (optional). Type: List of files; see file_reads.

A list of files written by the analysis subject.

3.3.

Report Format /l-int-win 59

Lastline Analyst APl Documentation, Release 2.0

file_deletes: (optional). Type: List of files; see file_reads.
A list of files deleted by the analysis subject.

file_hardlinks: (optional). Type: List of files; see file_reads.
A list of files hardlinked by the analysis subject.
* file_renames: (optional). Type: List of files; see file_reads.

A list of files renamed by the analysis subject.

L]

file_queries: (optional). Type: List of files; see file_reads.

A dictionary of files which status was being queried by the analysis subject. Key - file object.

Value - status (int value)

file_searches: (optional). Type: List of strings.
A list of files searched for by the analysis subject.
* process_interactions: (optional). Type: List of process-interactions; see below.

A list of processes the analysis subject interacts with.

In addition to the fields of type Windows Process, each element contains the operation(s) per-

formed:
— operations: Type: List of strings.
Example: “create_thread”,”write_mem”.
The type of operations performed on the remote process. Possible value
* “create_process”: Create a process.
“terminate_process”: Terminate a process.
* “create_thread”: Create a thread.
% “terminate_thread”: Terminate a thread.
“read_mem”: Read from the process memory.
* “‘write_mem”: Write to the process memory.
* mutex_creates: (optional). Type: List of mutexes; see below.
A list of mutex synchronization objects created by the analysis subject.
— mutex_name: Type: String.
Example: “Mutex1”.
Name of the mutex synchronization object.
* mutex_opens: (optional). Type: List of mutexes; see mutex_creates.
A list of mutex synchronization objects opened by the analysis subject.
* raised_exceptions: (optional). Type: List of exceptions; see below.
A list of exceptions raised by the analysis subject.
— addr: (optional). Type: Hexadecimal number.
Example: 0x7¢832297.

Instruction address raising the exception.

S are:

60 Chapter 3

. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

code: (optional). Type: Hexadecimal number.
Example: 0xc0000005.

Microsoft Windows exception code.

name: (optional). Type: String.
Example: “STATUS_ACCESS_VIOLATION”.

Microsoft Windows exception name.

exception_name: (optional). Type: String.

Example: “Exception 0xc0000005 (STATUS_ACCESS_VIOLATION) at 0x7¢832297
(subject_id: 2)”.

Full exception information.

exception_count: (optional). Type: Integer.
Example: 1.
Number of exception occurrences.
¢ idt_hooks: (optional). Type: List of the modified IDT entries; see below.
A list of the modified by the analysis subject IDT entries.

vector: (optional). Type: Integer number.
Example: 113.
An interruption number.
— isr_address: (optional). Type: Hexadecimal number.
Example: 0xfffff800019fc710.
An original virtual address of the ISR (Interrupt Service Routines).
— new_isr_address: (optional). Type: Hexadecimal number.
Example: Oxfffff880041f1b9d.
A new virtual address of the ISR (Interrupt Service Routines).
— isr_module_name: (optional). Type: String.
Example: “c:\windows\system32\ntkrnlmp.exe”.
A module which contains the original ISR (Interrupt Service Routines).
— new_isr_module_name: (optional). Type: String.
Example: “c:\windows\system32\hellodrv.sys”.
A module which contains a new ISR (Interrupt Service Routines).

— modification_sources: (optional). Type: List of the sources of the IDT modifications; see
modification_sources.

¢ ssdt_hooks: (optional). Type: List of the modified SSDT or Shadow SSDT entries; see below.
A list of the modified by the analysis subject SSDT/Shadow SSDT entries.
— service_index: (optional). Type: Hexadecimal number.
Example: 0x30.

A service index in the service table.

3.3.

Report Format /l-int-win 61

Lastline Analyst APl Documentation, Release 2.0

— service_address: (optional). Type: Hexadecimal number.
Example: 0x8057fc60.
An original address of the service function.
— new_service_address: (optional). Type: Hexadecimal number.
Example: 0xf7a574bl.
A new address of the service function.
— service_module_name: (optional). Type: String.
Example: “c:\windows\system32\ntkrnlmp.exe”.
An original module which contains the service function.
— new_service_module_name: (optional). Type: String.
Example: “c:\windows\system32\ntkrnlmp.exe”.
A new module which contains the service function.
— service_function_name: (optional). Type: String.
Example: “NtCreateProcessEx”.
A name of the modified service function.
— table_name: (optional). Type: String.
Example: “system service table”.
A name of the system table.

— modification_sources: (optional). Type: List of the sources of the SSDT modification;
see modification_sources.

* kernel_memory_hooks: (optional). Type: List of the modified kernel memory areas; see below.
A list of the modified critical system areas.
— kernel_address: (optional). Type: Hexadecimal number.
Example: 0x8056cdcO.
The modified kernel address.

kernel_module_name: (optional). Type: String.
Example: “c:\windows\system32\ntkrnlmp.exe”.

The modified kernel module name.

area_name: (optional). Type: String.
Example: “kernel image section PAGE”.

A name of the modified critical area.

kernel_function_name: (optional). Type: String.
Example: “NtCreateFile”.

A name of the modified system function.

modification_sources: (optional). Type: List of the sources of the kernel memory modi-
fication; see modification_sources.

* modification_sources: (optional). Type: List of the sources of the code or memory modification.

62 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— virtual_address: (optional). Type: Hexadecimal number.
Example: Oxfffff880041f1b9d.
The virtual address of an instruction which overwrote an original code or memory.
— modifier_module_name: (optional). Type: String.
Example: “c:\windows\system32\hellodrv.sys”.
The module containing the instruction which overwrote an original code or memory.
e service_creates: (optional). Type: List of services. See below.

A list of the services created by the analysis subject.

service_file: (optional). Type: File. see file_reads.

service_name: (optional). Type: String.

A display name to be used by user interface programs to identify the service.

start_type: (optional). Type: Integer.
Example: 0x00000002 (SERVICE_FILE_SYSTEM_DRIVER)

The service type.

start_type: (optional). Type: Integer.
Example: 0x00000000 (SERVICE_BOOT_START)
The service start options.
* service_starts: (optional). Type: List of services; see service_creates.
A list of services started by the analysis subject.
* service_stops: (optional). Type: List of services; see service_creates.
A list of services stopped by the analysis subject.
* service_changes: (optional). Type: List of services changes; see below.
A list of the services changed by the analysis subject.
— service_name: (optional). Type: String.
Example: “WNKiserv”
A display name to be used by user interface programs to identify the service.
— change: (optional). Type: String.
A change of the service made by the analysis subject.
e driver_loads: (optional). Type: Services; see service_creates.
A list of the drives loaded by the analysis subject.
¢ driver_unloads: (optional). Type: Services; see service_creates.
A list of the drives unloaded by the analysis subject.
* dns_queries: (optional). Type: List of DNS queries; see DNS query.
List of DNS queries done by the analysis subject.

3.3.

Report Format /l-int-win 63

Lastline Analyst APl Documentation, Release 2.0

* network_connections: (optional). Type: List of network connections; see network connection.

List of network connections done by the analysis subject using a protocol that is not parsed into
a more specific protocol type.

¢ http_conversations: (optional). Type: List of HTTP connections; see HTTP connection.

List of network connections identified to use the HTTP protocol done by the analysis subject.
¢ irc_conversations: (optional). Type: List of IRC connections; see /RC connection.

List of network connections identified to use the IRC protocol done by the analysis subject.
 ftp_conversations: (optional). Type: List of FTP connections; see FTP connection.

List of network connections identified to use the FTP protocol done by the analysis subject.
¢ smtp_conversations: (optional). Type: List of SMTP connections; see SMTP connection.

List of network connections identified to use the SMTP protocol done by the analysis subject.
* address_scans: (optional). Type: List of network address scans; see address scan.

List of network address scans done by the analysis subject.
* downloaded_files: (optional). Type: List of file-download tuples; see below.

List of files that were downloaded using the Microsoft Windows file-download API functions.
Each element is a tuple of file-origin URL and a File element (see file_reads).

Note: This list does not contain files downloaded using other mechanisms or protocol (such as
HTTP). Those are listed in the corresponding network section.

* pe_images: (optional). Type: List of PE images; see below.
A list of PE images found in the memory of the analysis subject.
— image. Type: PE image; see Portable Executable Image.
Process image information extracted when included in the analysis.
— image_diff: (optional). Type: PE image; see Portable Executable Image.
Process image information extracted at program termination or analysis end.
¢ memory_blocks: (optional). Type: List of memory-blocks; see below.

A list of allocated memory regions found in the memory of the analysis subject.

name: (optional). Type: String.
Example: “mem_b67f3190f04083ac1e0189307f4d64d4”.

A name of the memory block. Format: mem_<md5>.

size: (optional). Type: Integer.

A size of the memory block in bytes.

start_va: (optional). Type: Integer.

A VA to where the memory block starts.

end_va: (optional). Type: Integer.

A VA to where the memory block ends.

64 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— access: (optional). Type: Hexadecimal string.

A set of flags that indicate the memory block’s attributes (such as code/data, readable, or
writable).

— number_of_executed_pages: (optional). Type: Integer.
A number of executed pages in the memory block.
— executed_pages: (optional). Type: List of integers.
A list of VA of executed pages.
— dist_bytes_vector: (optional). Type: Hexadecimal string.
An internal field used by an analysis engine.
— average_bytes: (optional). Type: Hexadecimal string.
An internal field used by an analysis engine.
— autocorrelation: (optional). Type: Floating-point number.
An autocorrelation of the memory block data.
— entropy: (optional). Type: Floating-point number.
An entropy of the memory block data.
— embedded_pe_header. Type: Boolean.
True if we recognized a PE image header in the memory block.
— number_of_strings: (optional). Type: Integer.
A number of found strings in the memory block.
— strings: (optional). Type: List of strings.
Example: “SSP3FR.DLL”,”"ROOF",”Help Button”.
A list of strings found in the memory block.
— mdS. Type: Hexadecimal string.
A md5 hash of a content.
« strings_lists: (optional). Type: List of named strings-lists; see below.
A list of named strings-lists. The name identifies a type of the strings in the list.
— name: (optional). Type: String.
Example: “heap_strings”.
A name of the string list.
— strings: (optional). Type: List of strings.
Example: “ProgramData=C:\ProgramData”,"NUMBER_OF_PROCESSORS=1","ncacn_ip_tcp”.
A list of strings.
 patched_sleeps: (optional). Type: List of patched sleep values; see below.

A list of patched sleep values. It is an anti-evasion technique which changes a waiting period
(if it is too long) for a sleep function and timers.

3.3.

Report Format /l-int-win 65

Lastline Analyst APl Documentation, Release 2.0

— count: (optional). Type: Integer.
Example: 1.
A number of times the sleep function was called.

— new_value: (optional). Type: Integer.
Example: 5.
A new value of the waiting period in seconds.

— old_value: (optional). Type: Integer.
Example: 3600.
A old value of the waiting period in seconds.

* strings_comparisons: (optional). Type: List of string comparisons; see below.

A list of string comparisons.

name: (optional). Type: String.
Example: “shlwapi.dll.StrStr_generic”.

A possible name of the string comparison function. Usually defined by a flirt signature
flirt_signatures.

src_string: (optional). Type: String.
Example: “C:\Users\Public\Desktop”.

A comparable string 1.

dst_string: (optional). Type: String.
Example: “%SYSTEMROOT%”.

A comparable string 2.

src_sources: (optional). Type: List of strings.
Example: “\Registry\Machine\Software\Classes.dot\Icon”,”Command line”.

A alist of possible sources (from where this string could be read) for string 1.

dst_sources: (optional). Type: List of strings.
Example: “\Registry\Machine\Software\Classes.dot\Icon”,”Command line”.
A a list of possible sources (from where this string could be read) for string 2.
* frequent_api_calls: (optional). Type: List of the frequent API calls; see below.
A list of the frequent API calls.
— name: (optional). Type: String.
Example: “NtOpenThreadToken”.
A name of the API function which was frequently called.
— count: (optional). Type: String.
Example: 31440.

A number of times the API function was called.

66 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— pid: (optional). Type: Integer.
Example: 145.
Windows process identifier (TID) of the calling process.
— tid: (optional). Type: Integer.
Example: 167.
Windows thread identifier (TID) of the calling thread.
* yara_signatures: (optional). Type: List of the Yara signatures; see below.
A list of the Yara signatures which hit on the analysis subject.
— name: (optional). Type: String.
Example: “apt_win_generic_imageStego”.
A name of the Yara signatures.
— score: (optional). Type: Integer.
Example: 75.

A score which defines how dangerous the analysis subject according to the Yara signa-
ture. Possible range from 0 (benign) to 100 (malicious).

— internal: (optional). Type: Boolean.
If true the signature is only for an internal usage.
« flirt_signatures: (optional). Type: List of the Yara signatures; see below.

A list of the flirt signatures which hit on the analysis subject. The flirt signatures recognize a
known functions.

— name: (optional). Type: String.
Example: ““___ascii_strnicmp”
Name of the signature.

* keyboard_capture: (optional). Type: List of keyboard actions captured; see below.
A list of keyboard actions sent during the analysis which were seen on malware behavior.

— word: (optional). Type: String.
Example: “8989-8408-5161-4765”
Word captured by sample during analysis.

— word_type: (optional). Type: String.
Example: “Credit Card”

Type of word that was captured.

3.3.2 Windows Process

Information on a Windows process.

Windows process contents

3.3. Report Format /l-int-win 67

Lastline Analyst APl Documentation, Release 2.0

* process_id. Type: String.
Example: “1376”.
Windows process identifier (PID).
* executable: (optional). Type: File; see file_reads.
Process image information.
e arguments: (optional). Type: String.
Example: “C:\subject.exe argl arg2”.
Full command line used to start the analysis subject.
* bitsize: (optional). Type: Integer.
Example: 32.
Process bit-size (32bit or 64bit process).
« analysis_subject_id: (optional). Type: Integer.
Example: 2.

Identifier of the analysis subject within the analysis report if the process belongs to an analysis subject
monitored in the analysis run.

3.3.3 Portable Executable Image

A process image extracted during the analysis run.
Process image contents
* name: (optional). Type: String.
Example: “pe_i_5177683cb94a34bfb52142cfb1c49806”.
A name of the section.
Format:
— “main” for the main PE image in the process.
— “pe_i_<md5>" for the unknown PE image in the process recognized as loaded image.
— “pe_f_<md5>" for the unknown PE image in the process recognized as non-loaded image.
* image_base. Type: Integer.

When the linker creates an executable, it assumes that the file will be memory-mapped to a specific location
in memory.

* directories_mask. Type: Binary string.
A bit mask which shows a presence of each entry in DataDirectory of the image.
* number_of_sections. Type: Integer.
A number of sections in the image.
» average_bytes. Type: Hexadecimal string.
An internal field used by an analysis engine.
e dll. Type: Boolean.

true if the image is a Dynamic Load Library

68 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

entry_point. Type: Integer.

An address where the loader will begin execution.
image_size. Type: Integer.

A size of the region starting at the image base up to the end of the last section.
loaded. Type: Boolean.

True if we recognized an image as a loaded PE image. False if we recognize as image as a file. (non loaded
PE image).

mdS. Type: Hexadecimal string.
A md5 hash of a content.
sections: (optional). Type: List of sections; see below.
PE image sections.
— mdS5_phys: (optional). Type: Hexadecimal string.
A md5 hash of physical data of the section (offset : offset + physical_size).
— md5_virt: (optional). Type: Hexadecimal string.
A md5 hash of virtual data of the section (virtual_address : virtual_address + virtual_size).
— name: (optional). Type: String.
Example: “.text”.
A name of the section.
— physical_size: (optional). Type: Integer.
A size of the section after it’s been rounded up to the file alignment size.
— offset: (optional). Type: Integer.
A file-based offset of where the raw data emitted by the compiler or assembler can be found.
— virtual_size: (optional). Type: Integer.
A size of the section after it’s been rounded up to the page alignment size.
— virtual_address: (optional). Type: Integer.
A RVA to where the loader should map the section.
— characteristics: (optional). Type: Hexadecimal string.
A set of flags that indicate the section’s attributes (such as code/data, readable, or writable).
— dist_bytes_vector: (optional). Type: Hexadecimal string.
An internal field used by an analysis engine.
— average_bytes: (optional). Type: Hexadecimal string.
An internal field used by an analysis engine.
— autocorrelation: (optional). Type: Floating-point number.
An autocorrelation of the section data.
— entropy: (optional). Type: Floating-point number.

An entropy of the section data.

3.3. Report Format /l-int-win 69

Lastline Analyst APl Documentation, Release 2.0

— number_of_strings: (optional). Type: Integer.
A number of found strings in the section.
— strings: (optional). Type: List of strings.
Example: “SSP3FR.DLL”,”ROOF",”Help Button”.

A list of strings found in the section.

3.3.4 Windows Analysis Metadata Format
During the analysis run, the analysis engine extracts the metadata that is available for download. This type extends the
Analysis Metadata Format type.
Metadata contents
« file: (optional). Type: File; see file_reads.

Name of the file generated during the analysis run. Applies to metadata_type “generated_file”.

3.3.5 Windows Analysis Process Dumps (PE Snapshots)

The analysis engine extracts process dumps/snapshots of the programs under analysis whenever an interesting action
is triggered. These snapshots are exported via analysis metadata; see Windows Analysis Metadata Format.

These snapshots are available in two formats:

¢ process_snapshot: This snapshot type is generated for all 32-bit or 64-bit processes that are tracked during
the analysis. For each process, the process snapshot file contains allocated memory sections/areas mapped
during the analysis, as well as metadata describing the placement of these different memory sections within
the process memory and how the content/placement changes over time.

 process_dump: (deprecated). For 32-bit processes, the system exports PE files which can be analyzed with
a wide variety of tools. Since the PE format is limited to describing code/data sections loaded at 32-bit
addresses, this snapshot type is not applicable to 64-bit processes or programs that load data beyond the
32-bit address range.

At the same time, this snapshot type does not support multiple snapshot states within one file, as supported
by files in the process_snapshot format.

3.3.6 IDA Pro Integration

When loading a process_snapshot file in IDA Pro, the code is annotated with runtime information extracted during
the dynamic analysis, such as API function exports, program entry-points, or instruction addresses of interesting code
regions.

To get started, download the Python loader available at https://analysis.lastline.com/analysis/api-docs/examples/
llprocess_snapshot_loader.py to the IDA Pro directory <IDA dir>/loaders/.

With the loader added to IDA Pro, the program offers a new loader window for process snapshots generated by the
Lastline analysis system:

70 Chapter 3. Analysis Results

https://analysis.lastline.com/analysis/api-docs/examples/llprocess_snapshot_loader.py
https://analysis.lastline.com/analysis/api-docs/examples/llprocess_snapshot_loader.py

Lastline Analyst APl Documentation, Release 2.0

Load a new File

Load file .. _arouph2daseciebiPclf6fed] c097f4ans3b8d report_ fdhdumpsiprocess_snapshots_1_llz as

: Lazthne Proc
Binary file

Frocessor ype

IMetaF'E [dizazzemble all opocodes] [metapc] LI Set
Enaluziz
Loading segment IJEIEIEIEIEIEIEIEIEIEIEIEIEIEIEI k.ernel options 1| Kemel optionz g|
v Enabled
Loading offzet |]IZIIZIIIIEIIZIIZIIIIEIIZIEIEIEIEIEIEI ¥ Indicator enabled Processar optians |
—Options
I Loading options [Load resources
¥ Fill segment gaps ¥ Fename DLL entries
¥ | Create zegments [T Manual load
[T | Create FLAT group [T | Create imports segment
I Load as code segment
(]4 Cancel | Help

Select the Lastline Process Snapshot option. The IDA loader displays the snapshots available in the input file, as well
as additional metadata for each individual snapshot; select the snapshot for analysis and confirm with OK.

E Dlutput window
Snapshot Id Bitsize Analysis Reason
a 64 analyze_module_execution
1 64 analysis_terminated

Pleaze, choosze snapshot id from available snapshots

[nput IE =

] Cancel

3.3. Report Format /l-int-win 71

Lastline Analyst APl Documentation, Release 2.0

IDA Pro assembles the data and code blocks as they were placed within the process memory at the point of the
snapshot, and annotates the code with all available metadata: functions referenced from untrusted code are colored in
blue, otherwise grey:

ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.
ntkrnlmp.

EXE

exe;
3 {3
EXE !
3 {3
eXE:
EXE:
EXE:
EBXE:
exe;
:FFFFF888B18C7ECH

e Xe

EXE !
3 {3
eXE:
EXE:
EXE:
EBXE:
exe;
3 {3
EXE !
:FFFFF8B08B18CYFA1

exe

eXE:
EXE:
:FFFFF88BB18CYFE1

BXE

EBXE:
exe;
3 {3
EXE !
3 {3
eXE:
:FFFFF88080818CE001

BxE

EXE:
EXE:
:FFFFF30808818CE0A0

exE

exe:
eXE:
BXE:
BXE:
BXE:
BXE:

:FFFFFE8BB18C7EBA

FFFFFEB0B18C7EDD
FFFFF888B18C7EBT
FFFFF88B0B18C7ERD
FFFFF88BB18C7E28
FFFFF886B18C7E21
FFFFF88BB18C7E28
FFFFF880B18C7E4B
FFFFF388B818C7E4A1
FFFFFEBBB18C7EAB

FFFFF88BB18C7ECH
FFFFF88BB18C7ECH
FFFFF886B18C7ECT
FFFFF880B18C7ECE
FFFFF380B18C7EER
FFFFF388B18C7EE
FFFFFEB0818C7EEB
FFFFF88BB18C7FA8
FFFFF88B0B18C7FA0

FFFFF80B0B18C7FA8
FFFFF88BB18C7FGA

FFFFF880B18C7FGE
FFFFFEB0B18C7FE0
FFFFF88BB18C7FE0
FFFFF8086B18C7FE1
FFFFF88B0B18C7FE8
FFFFF800B18CE000

FFFFF380B18C30088
FFFFF3800818C808A0

FFFFF80866818CE0A1
FFFFF80B0B18CE0AAE
FFFFF88B0B18CEACH
FFFFF886B18CEACT
FFFFF380BB18C88CE
FFFFF380018C30ER

ZwgueryInformationFile_ db ?

db 7 dup(?})
dgq 3 dup({?)
db ?
db 7 dup(?)
dg 3 dup{?)
ZwEnumerateValueKey db ?
db 7 dup(?})
dq 8Fh dup({?)
ZwQueryValuekKey db ?

Zwlpenkey

db 7 dup(?)

dg 3 dup{?)
ZwhllocateVirtualHemory db ?

db 7 dup(?})

dg 3 dup(?)
ZwQueryIntormationProcess db ?

db 7 dup(?)
dg 8Bh dup(?)
ZwdetInformationProceszs db ?
db 7 dup(?)
dg 3 dup{?)
ZuCreateKey db ?
db 7 dup(?}
dq 8Fh dup({?)
ZwQueryInformationToken db ?
db 7 dup(?)
dg 13h dup(?}
ZwopenProcess_ db ?

db 7 dup(?})
dgq 3 dup({?)
ZwSetInformationFile db ?
db 7 dup(?)
dg 3 dup{?)
ZwMapViewOfSection db ?

Loaded system modules are represented as empty segments with exported functions as named references:

72

Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

Mame Stark End | R |W IX I o | L IAIlgn | Baze I Tuype I Class |AD I es | (] | ds | fe | s I
@ ledzam.dil FFFFF20001 6D 2000 FFFFFE00018D35FC ? 7 7 . L bue 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
Eﬂ hal.di FFFFF20001 206000 FFFFFE00012445D8 T L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
|§,‘ﬂ nitkmimp. exe FFFFF2000124F000 FFFFFEO00TDFESCO T L huyte ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ ataport sus FFFFF22000C00000 FFFFFE2000CT C4A0 oYY [T 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
EE pshed dl FFFFFEa000C8C000 FFFFFEa000CH%244 F L hute 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ clfs.sus FFFFFEa000CA0000 FFFFFEB000CED 990 o7 L hyte 0000 public CODE &4 0000 FFFFF... 0000 FFFFF... FFFFF
@ cidl FFFFFEA000CFEDOD FFFFFE2000D08010 7 L hyte 0000 public CODE &4 0000 FFFFF... 0000 FFFFF... FFFFF
Eﬂ priidex. sus FFFFFEE000E 64000 FFFFFE2000EEDFER T L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
|§,‘ﬂ wilfldr. sy FFFFF22000F1EO00 FFFFFE2000F 25388 T L huyte ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ acpi. sy FFFFF22000F 24000 FFFFFE2000FEEFDE T L huyte ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
EE wrnilib. suz FFFFFEa000Fa1000 FFFFFEa000F 6008 F L hute 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
|§,'T_| fltrnar. sus FFFFF&3001 047000 FFFFFE3001083250 PoroY L bute 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ mETpc. 3y FFFFFS8001047000 FFFFFE8001102040 7 L hyte 0000 public CODE &4 0000 FFFFF... 0000 FFFFF... FFFFF
EE_‘ cho.sus FFFFF22001105000 FFFFFE2001140E30 T L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
@ i sy FFFFF22001177000 FFFFFE200171 80758 7 L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
@ ksecdd sus FFFFF22001 200000 FFFFFEE001216520 T [T ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ nietio.sys FFFFFS2001 400000 FFFFFEa00145C110 F L buyte 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
|§,'T_| videopit.sus FFFFFS5001 495000 FFFFFE30014E7183 PoroY L bute 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ watchdog. sys FFFFFEE0014BE000 FFFFFE80014C3958 o7 L hyte 0000 public CODE &4 0000 FFFFF... 0000 FFFFF... FFFFF
EE_‘ ndiz. sus FFFFF220014F 5000 FFFFFE20015CF131 T L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
@ classphp.sys FFFFF22001 616000 FFFFFE20016304D0 7 L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
@ fiupkcint sys FFFFF220012B4000 FFFFFE00TSECT 94 T [T ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ mup. s FFFFFS8001 990000 FFFFFE200T3456C0 F L buyte 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ hwpalicy. sus FFFFFE8001 S4E000 FFFFFEa001983008 F L hute 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ ushport. sys FFFFF88002200000 FFFFFE8002229060 o7 L hyte 0000 public CODE &4 0000 FFFFF... 0000 FFFFF... FFFFF
EE_‘ nidistapi. sus FFFFF22002234000 FFFFFE200229B5E 8 T L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
Eﬂ termdd.sys FFFFF2200276E000 FFFFFER0027744FC 7 L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
@ rdbss. sus FFFFF2200277F000 FFFFFE20027CE6E 4 T [T ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ diapi.sus FFFFF22002400000 FFFFFEa002407374 oYY [T 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ ks.suz FFFFFEa00243E000 FFFFFEa00247D0T0 F L hute 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ poitcls.sys FFFFFE8002B5E 000 FFFFFEB002BE4005 o7 L hyte 0000 public CODE &4 0000 FFFFF... 0000 FFFFF... FFFFF
@ dimk.suz FFFFF22002B9E000 FFFFFE2002BA4D0 28 T L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
Eﬂ crashdmp. sus FFFFF22002BC3000 FFFFFE2002ECCO0S 7 L huyte 0000 public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
|§,‘ﬂ dump_dumpata sus FFFFF22002B01000 FFFFFEE002ZED4BE0 T L huyte ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ srvnet. sus FFFFF22003400000 FFFFFEa0034250 20 oYY [T 0000 public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ mrzsmb. sus FFFFFSR003B34000 FFFFFEa003B5BE2C P L hute 0000 public CODE &4 0o0g FFFFF... 0000 FFFFF... FFFFF...
FFFFf 1] I L public

rzda.section_bB395e; FFFFF32004011000 FFFFFE200401 2000 C L bute ooaa public CODE &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
Eﬂ data.gection_Fab43%a.. FFFFFS2004012000 FFFFFE200401E0DD C L bute ooaa public DATA &4 0ooa FFFFF... 0000 FFFFF... FFFFF..
|§,‘ﬂ .data gection_70529456.. FFFFFEE00401E000 FFFFFE200401FO00 TN L bute oooo public DATA &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ .pdata section_Ofebfeda.. FFFFFEE00401FO00 FFFFFE2004020000 oYY [T 0000 public DATA &4 0oog FFFFF... 0000 FFFFF... FFFFF..
EE et section_H1a3bdfad.. FFFFFE0004020000 FFFFFEa004024000 F L hute 0000 public D&ATA &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ edata section_8b3ch02.. FFFFFEE004024000 FFFFFEE00402B000 TR L bute 0ooa public DATA &4 0000 FFFFF... 0000 FFFFF... FFFFF
@ IMIT section_c9cdn7adf.. FFFFFEE00402B000 FFFFFER00402C000 T L bute 0ooa public CODE &4 0000 FFFFF... 0000 FFFFF... FFFFF
Eﬂ Jaerc_section_c%ac?3a.. FFFFFS200402C000 FFFFFE2004020000 C L bute ooaa public DATA 32 0ooa FFFFF... 0000 FFFFF... FFFFF..
|§,‘ﬂ JTeloc.section_e408923.. FFFFF22004020000 FFFFFE200402E000 TN L bute oooo public DATA &4 0oog FFFFF... 0000 FFFFF... FFFFF..
@ PSS SUS FFFFF22004152000 FFFFFE20047 64400 T L huyte ooon public CODE &4 0oog FFFFF... 0000 FFFFF... FFFFF..

Unfortunately, IDA Pro currently does not provide the API to modify the program import table. As workaround, the
loader exports a list of interesting entry points found by the analysis engine as well as references to API invocations
from process memory as export table:

3.3. Report Format /l-int-win 73

Lastline Analyst APl Documentation, Release 2.0

@ Exparts

i arme Address
B4 entny_point. pe_d4af34 : : FFFFF88004002578
ZnCreatekey FFFFFEa00401 2198

Ordinal

| @ E=AcquireF azth utex FFFFFE80040M1 21F5
|2 PslnitialSystemProcess FFFFFa300401 20E3
|2 ObfDereferencelbject FFFFFE300401 2123
| 2] 2wllueryinformationFile FFFFF3200401E7AS
|2 ExtcguireResourcel nclusivelite FFFFF3200407 2053
| @ ZwReadFile FFFFFE800401E7ES
| (2] ZwiwriteFile FFFFF3800401E7EQ
|12 KeReleazeSpinlockFromDpclevel FFFFFa300401 21C0
|| 2% ObGet0bjectsecurity FFFFF3200407 2000
| @ ExDeleteR esourcelite FFFFFEE00401 2062
| [KeSetEvent FFFFFE200401 2088
| @ EntillocatePool FFFFF380040120C8
|2 DbReferencelbjectByM ame FFFFF3200407:2130
| @ ZwnilreateFile FFFFF2800401E7A0
|2 EwinitislizeResourcelite FFFFF320040712070
|2 loReqgizterShutdownatification FFFFFE300401 2010
|2 Zwslliocatet/itualt emany FFFFFE300401 2150
| @ Pl et ersion FFFFFEE00401 20F2
| @ PG etCurrentT hreadld FFFFF22004012190
| (2] wesrchr FFFFF3300401 2083
| @ EnlluenySystemlnformation FFFFF3200407 2093
| (2] PsTerminateSystemT hread FFFFFa800407 2038
| @ WCICpY FFFFF3200401 2248
| @ ProbeForRead FFFFF3E0040121ES
| @ Ob0pen0bjectBuM ame FFFFFE300401 2160
|2 lofCompleteR equest FFFFFE300401 2043
|2 2wlpenProcess FFFFFE300401EYED
|2 loUrregisterShutdownM otification FFFFF32004072030
|2 ExdllocatePoolithT ag FFFFF320040712153
| (2] RHDecompressBuffer FFFFFa800407 2238

7| KelnstackDetachProcess FFFFF3300407 200

Unsupported IDA Pro Versions

When opening a process snapshot using an unsupported version of IDA Pro, the following error message is displayed:

@ dze | Pro 64 bit to open these process snapshats

74 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

This can happen, for example, when a 64-bit process snapshot is opened in an IDA Pro version limited to the analysis
of 32-bit programs.

Likewise, the list of unavailable snapshots for this version of IDA Pro are marked accordingly:

E Output window

Snapshot Id Bitsize analysiz Reason

3.4 Report Format /l-int-osx

This analysis report format applies to a dynamic analysis run on an OSX platform.

In addition to the report fields that all report formats share (see Analysis Report Format), the report contains a number
of different fields with details about the analysis run.

Report contents
* remarks: (optional). Type: Dictionary.
— info (optional). Type: List of strings.
Example: “Textl”, Text2”.
A list of information strings concerning the analysis run.
— warning (optional). Type: List of strings.
Example: “Text1”,”Text2”.
A list of warning strings concerning the analysis run.
* overview. Type: Dictionary.
— analysis_engine. Type: String.
Example: “LLama - OSX”.
Name of the analysis engine used for generating the result.
— analysis_engine_version. Type: String.
Example: “1.2.4”.
Version of the analysis engine used for generating the result.
— analysis_start. Type: Date-Time.
Example: “2013-10-05 14:21:01.928894”.
Start timestamp of the analysis run.
— analysis_end. Type: Date-Time.

Example: “2013-10-05 14:22:02.935794”.

3.4. Report Format /l-int-osx 75

Lastline Analyst APl Documentation, Release 2.0

End timestamp of the analysis run.
 analysis_subjects. Type: List of analysis subjects; see OSX Analysis Subject Format.
A list of programs monitored during the analysis run.
 analysis_metadata: (optional). Type: List of analysis metadata; see OSX Analysis Metadata Format.

A list of artifacts generated during the analysis run. See get_result_artifact () for retrieving this
metadata.

e url_summary: (optional). Type: List of strings.
Example: “http://www.examplel.com”,’http://www.example2.com”.

Network summary of contacted URLs during analysis run.

3.4.1 OSX Analysis Subject Format
The analysis engine will monitor all analysis subjects, such as the originally started program and all child processes or
processes that a monitored program interacts with, and then list any security relevant data.
This type extends the format_lI_osx_analysis_subject type with additional information on OSX analysis subjects.
Analysis subject contents

* overview. Type: Dictionary.

Overview of the analysis subject. In addition to the base format contents, the following elements
are extracted:

— process. Type: Process; see OSX Process.
Information on the OSX process.
— ext_info: (optional). Type: File-Info; see Static File Information.
Static information on the process image.
¢ console_output: (optional). Type: Dictionary.
Console output of the program.
— stdout: (optional). Type: String.
Example: “text written to stdout”.
Program output written to default console.
— stderr: (optional). Type: String.
Example: “text written to error console”.
Program output written to error console.
¢ opened_windows: (optional). Type: List of GUI-windows; see below.
A list of GUI windows opened by the analysis subject.
— title: Type: String.
Example: “Mac Viewer”.

Window title content.

76 Chapter 3. Analysis Results

http://www.example1.com
http://www.example2.com

Lastline Analyst APl Documentation, Release 2.0

— text: Type: String.
Example: “FolderView”.
Window text content.
* loaded_libraries: (optional). Type: List of libraries; see below.
List of library files loaded by the analysis subject.
— filename: Type: String.
Example: “/tmp/foo.s0”.
Path to the library loaded by the analysis subject.
« file_reads: (optional). Type: List of files; see below.
A list of files read by the analysis subject
— filename. Type: String.
Example: “test”.
A file name. Could be absolute or relative path.
— abs_path: (optional). Type: String.
Example: “/tmp/test”.
An absolute path the file.
— ext_info: (optional). Type: File-Info; see Static File Information.

Static file information.

file_writes: (optional). Type: List of files; see file_reads.

A list of files written by the analysis subject.

file_deletes: (optional). Type: List of files; see file_reads.
A list of files deleted by the analysis subject.

file_searches: (optional). Type: List of strings.
A list of files searched for by the analysis subject.
* process_interactions: (optional). Type: List of process-interactions; see below.
A list of processes the analysis subject interacts with.
In addition to the fields of type OSX Process, each element contains the operation(s) performed:
— operations: Type: List of strings.

Example: “create_thread”,”write_mem”.

The type of operations performed on the remote process. Possible values are:

x “create_process”: Create a process.

* “terminate_process”: Terminate a process.

*

“create_thread”: Create a thread.
% “terminate_thread”: Terminate a thread.
e dns_queries: (optional). Type: List of DNS queries; see DNS query.
List of DNS queries done by the analysis subject.

. Report Format /l-int-osx 77

Lastline Analyst APl Documentation, Release 2.0

* network_connections: (optional). Type: List of network connections; see network connection.

List of network connections done by the analysis subject using a protocol that is not parsed into
a more specific protocol type.

¢ http_conversations: (optional). Type: List of HTTP connections; see HTTP connection.

List of network connections identified to use the HTTP protocol done by the analysis subject.
¢ irc_conversations: (optional). Type: List of IRC connections; see /RC connection.

List of network connections identified to use the IRC protocol done by the analysis subject.
 ftp_conversations: (optional). Type: List of FTP connections; see FTP connection.

List of network connections identified to use the FTP protocol done by the analysis subject.
¢ smtp_conversations: (optional). Type: List of SMTP connections; see SMTP connection.

List of network connections identified to use the SMTP protocol done by the analysis subject.
* address_scans: (optional). Type: List of network address scans; see address scan.

List of network address scans done by the analysis subject.
* downloaded_files: (optional). Type: List of file-download tuples; see below.

List of files that were downloaded using the OSX file-download API functions. Each element
is a tuple of file-origin URL and a File element (see file_reads).

Note: This list does not contain files downloaded using other mechanisms or protocol (such as
HTTP). Those are listed in the corresponding network section.

* frequent_api_calls: (optional). Type: List of the frequent API calls; see below.
A list of the frequent API calls.

name: (optional). Type: String.
Example: “open”.

A name of the API function which was frequently called.

count: (optional). Type: String.
Example: 31440.

A number of times the API function was called.

pid: (optional). Type: Integer.
Example: 145.

OSX process identifier (TID) of the calling process.

tid: (optional). Type: Integer.
Example: 167.
OSX thread identifier (TID) of the calling thread.
* yara_signatures: (optional). Type: List of the Yara signatures; see below.
A list of the Yara signatures which hit on the analysis subject.
— name: (optional). Type: String.
Example: “apt_osx_generic_imageStego”.

A name of the Yara signatures.

78 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— score: (optional). Type: Integer.
Example: 75.

A score which defines how dangerous the analysis subject according to the Yara signa-
ture. Possible range from 0 (benign) to 100 (malicious).

— internal: (optional). Type: Boolean.

If true the signature is only for an internal usage.

3.4.2 OSX Process

Information on an OSX process.
OSX process contents
* process_id. Type: String.
Example: “1376”.
OSX process identifier (PID).
» executable: (optional). Type: File; see file_reads.
Process image information.
e arguments: (optional). Type: String.
Example: “[test argl arg2”.
Full command line used to start the analysis subject.
« analysis_subject_id: (optional). Type: Integer.
Example: 2.

Identifier of the analysis subject within the analysis report if the process belongs to an analysis subject
monitored in the analysis run.

3.4.3 OSX Analysis Metadata Format

During the analysis run, the analysis engine extracts the metadata that is available for download. This type extends the
Analysis Metadata Format type.

Metadata contents
« file: (optional). Type: File; see file_reads.

Name of the file generated during the analysis run. Applies to metadata_type “generated_file”.

3.5 Report Format /l-win-timeline-based

This analysis report format applies to a dynamic analysis run on a Microsoft Windows platform. Differently from
Report Format Il-int-win, this report focuses on the timeline of different actions and exposes behavior as a series of
events associated with the timestamp when each event was observed.

In addition to the report fields that all report formats share (see Analysis Report Format), the report contains a number
of different fields with details about the analysis run.

Report contents

3.5. Report Format /I-win-timeline-based 79

Lastline Analyst APl Documentation, Release 2.0

* remarks: (optional). Type: Dictionary.

info (optional). Type: List of strings.
Example: “Textl” Text2”.

A list of information strings concerning the analysis run.

warning (optional). Type: List of strings.
Example: “Textl”) Text2”.
A list of warning strings concerning the analysis run.

* overview. Type: Dictionary.

analysis_engine. Type: String.
Example: “LLama - WindowsXP”.

Name of the analysis engine used for generating the result.

analysis_engine_version. Type: String.
Example: “1.2.4”.

Version of the analysis engine used for generating the result.

analysis_start. Type: Date-Time.
Example: “2013-10-05 14:21:01.928894”.

Start timestamp of the analysis run.

analysis_end. Type: Date-Time.
Example: “2013-10-05 14:22:02.935794”.
End timestamp of the analysis run.
« analysis_subjects. Type: List of analysis subjects; see Windows Analysis Subject Format.
A list of programs monitored during the analysis run.
* files. Type: List of files; see below.
— file_id. Type: Integer.
Example: “1”.
ID used to identify the file.
— filename. Type: String.
Example: “desktop.ini”.
A file name. Could be absolute or relative path.
— abs_path: (optional). Type: String.
Example: “C:\Users\desktop.ini”.
An absolute file path.
— ext_info: (optional). Type: File-Info; see Static File Information.

Static file information.

80 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

 analysis_metadata: (optional). Type: List of analysis metadata; see Windows Analysis Metadata Format.

A list of artifacts generated during the analysis run. See get_result_artifact () for retrieving this
metadata.

* randomized_registry_values: (optional). Type: List of registry keys; see registry_reads.

A list of Microsoft Windows Registry values that the analysis engine randomized during the analysis run
to avoid detection by the analysis subject. For the format of each value, refer to registry_reads.

e url_summary: (optional). Type: List of strings.
Example: “http://www.examplel.com”,’http://www.example2.com”.

Network summary of contacted URLs during analysis run.

3.6 PE Stats information

The analysis engine extracts statistic file information for most PE files manipulated during the analysis run.
PE Stats information contents
e size. Type: Integer.
Example: 1.
Size of the PE.
* histogram. Type: List.
Example: “[{ ‘byte’: 0, frequency: 1.0}]”.
A list with dicts representing the histogram of byte frequency in the PE.
* entropy. Type: Floating-point number.
Example: 1.5.
An entropy of the PE data.
* average. Type: Floating-point number.
Example: 1.5.
Average of all byte values in the PE file.
e variance. Type: Floating-point number.
Variance of the byte values in the PE file.
 autocorrelation_1. Type: Floating-point number.
Autocorrelation (lag=1) of byte values in the PE data.
* block_average. Type: List.

A list with the average of byte values in data blocks of 1024 bytes.

3.7 PE Resource Stats information

The analysis engine extracts statistic information about the resources in a PE file for most PE files manipulated during
the analysis run.

PE Resource Stats information contents

3.6. PE Stats information 81

http://www.example1.com
http://www.example2.com

Lastline Analyst APl Documentation, Release 2.0

* name: Type: String.
Example: “RT_MANIFEST”.
The name of the PE Resource.
* lang. Type: String.
Example: “LANG_ENGLISH”.
Primary language identifier for the resource.
* sublang:. Type: String.
Example: “SUBLANG_ENGLISH_US”.
Sublanguage identifier for the resource.
* stats:. Type: PE Stats; see PE Stats information.

PE Resource statistic information.

3.7.1 Windows Analysis Subject Format

The analysis engine will monitor all analysis subjects, such as the originally started program and all child processes or

processes that a monitored program interacts with, and then list any security relevant data.

This type extends the Analysis Subject Format type with additional information on Windows analysis subjects.

Analysis subject contents

* overview. Type: Dictionary.

Overview of the analysis subject. In addition to the base format contents, the following elements are

extracted:
— process. Type: Process; see Windows Process.
Information on the Windows process.
— ext_info: (optional). Type: File-Info; see Static File Information.
Static information on the process image.
* console_output: (optional). Type: Dictionary.
Console output of the program.
— stdout: (optional). Type: String.
Example: “‘text written to stdout”.
Program output written to default console.
— stderr: (optional). Type: String.
Example: “text written to error console”.
Program output written to error console.
* opened_windows: (optional). Type: List of GUI-windows; see below.
A list of GUI windows opened by the analysis subject.
— title: Type: String.
Example: “Documents and Settings”.

Window title content.

82 Chapter 3

. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— text: Type: String.
Example: “FolderView”.
Window text content.
¢ loaded_libraries: (optional). Type: List of libraries; see below.
List of library files loaded by the analysis subject.
— filename: Type: String.
Example: “C:\windows\syswow64\ole32.dII”.
Path to the library loaded by the analysis subject.
 actions: Type: List of actions; see below.

List of actions performed by the analysis subject with timeline information; see below.

id: (optional). rype: integer.

example: 1.

unique id of the action within the analysis report.
— action_name: Type: String.
Example: “FileWrite”.

Name of the action performed by the analysis_subject

action_type: (optional). Type: String
Example: “write”.

Define the type of action that is performed on the resource.

resource_type: (optional). Type: String
Example: “file_resource”.

Define the type of resource (if any) associated with this action.

timestamp: Type: Date-Time.
Example: “2013-10-05 14:21:01.928894”.

Timestamp when the action happened.

thread_id: (optional) Type: Integer.
Example: 1020.

Thread ID (within the analysis subject) that executed the action.

stack_depth: (optional) Type: Integer.
Example: 2.

Inform how many calls we are away from the first call

last_timestamp: (optional) Type: Date-Time.
Example: “2013-10-05 14:21:01.928894".

Timestamp when the action was last repeated.

3.7. PE Resource Stats information 83

Lastline Analyst APl Documentation, Release 2.0

— resource: (optional). Type: Resource; see Action Resources.

Information on action resource. Name of the resource will match the name passed in re-
source_type.

¢ http_conversations: (optional). Type: List of HTTP connections; see HTTP connection.

List of network connections identified to use the HTTP protocol done by the analysis subject.
* irc_conversations: (optional). Type: List of IRC connections; see IRC connection.

List of network connections identified to use the IRC protocol done by the analysis subject.
 ftp_conversations: (optional). Type: List of FTP connections; see FTP connection.

List of network connections identified to use the FTP protocol done by the analysis subject.
¢ smtp_conversations: (optional). Type: List of SMTP connections; see SMTP connection.

List of network connections identified to use the SMTP protocol done by the analysis subject.
* address_scans: (optional). Type: List of network address scans; see address scan.

List of network address scans done by the analysis subject.
* downloaded_files: (optional). Type: List of file-download tuples; see below.

List of files that were downloaded using the Microsoft Windows file-download API functions. Each ele-
ment is a tuple of file-origin URL and a File element (see file_reads).

Note: This list does not contain files downloaded using other mechanisms or protocol (such as HTTP).
Those are listed in the corresponding network section.

e pe_images: (optional). Type: List of PE images; see below.
A list of PE images found in the memory of the analysis subject.
— image. Type: PE image; see Portable Executable Image.
Process image information extracted when included in the analysis.
— image_diff: (optional). Type: PE image; see Portable Executable Image.
Process image information extracted at program termination or analysis end.
¢ memory_blocks: (optional). Type: List of memory-blocks; see below.

A list of allocated memory regions found in the memory of the analysis subject.

name: (optional). Type: String.
Example: “mem_b67f3190f04083ac1e0189307f4d64d4”.

A name of the memory block. Format: mem_<md5>.

size: (optional). Type: Integer.

A size of the memory block in bytes.

start_va: (optional). Type: Integer.

A VA to where the memory block starts.

end_va: (optional). Type: Integer.

A VA to where the memory block ends.

access: (optional). Type: Hexadecimal string.

A set of flags that indicate the memory block’s attributes (such as code/data, readable, or writable).

84 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— number_of_executed_pages: (optional). Type: Integer.
A number of executed pages in the memory block.
— executed_pages: (optional). Type: List of integers.
A list of VA of executed pages.
— dist_bytes_vector: (optional). Type: Hexadecimal string.
An internal field used by an analysis engine.
— average_bytes: (optional). Type: Hexadecimal string.
An internal field used by an analysis engine.
— autocorrelation: (optional). Type: Floating-point number.
An autocorrelation of the memory block data.
— entropy: (optional). Type: Floating-point number.
An entropy of the memory block data.
— embedded_pe_header. Type: Boolean.
True if we recognized a PE image header in the memory block.
— number_of_strings: (optional). Type: Integer.
A number of found strings in the memory block.
— strings: (optional). Type: List of strings.
Example: “SSP3FR.DLL”,”ROOF",”Help Button”.
A list of strings found in the memory block.
— mdS. Type: Hexadecimal string.
A mdS5 hash of a content.
* strings_lists: (optional). Type: List of named strings-lists; see below.
A list of named strings-lists. The name identifies a type of the strings in the list.
— name: (optional). Type: String.
Example: “heap_strings”.
A name of the string list.
— strings: (optional). Type: List of strings.
Example: “ProgramData=C:\ProgramData”,”"NUMBER_OF_PROCESSORS=1","ncacn_ip_tcp”.
A list of strings.
* patched_sleeps: (optional). Type: List of patched sleep values; see below.

A list of patched sleep values. It is an anti-evasion technique which changes a waiting period (if it is too
long) for a sleep function and timers.

— count: (optional). Type: Integer.
Example: 1.

A number of times the sleep function was called.

3.7. PE Resource Stats information 85

Lastline Analyst APl Documentation, Release 2.0

— new_value: (optional). Type: Integer.
Example: 5.
A new value of the waiting period in seconds.

— old_value: (optional). Type: Integer.
Example: 3600.
A old value of the waiting period in seconds.

* frequent_api_calls: (optional). Type: List of the frequent API calls; see below.
A list of the frequent API calls.

name: (optional). Type: String.
Example: “NtOpenThreadToken”.

A name of the API function which was frequently called.

count: (optional). Type: String.
Example: 31440.

A number of times the API function was called.

pid: (optional). Type: Integer.
Example: 145.

Windows process identifier (TID) of the calling process.

tid: (optional). Type: Integer.
Example: 167.

Windows thread identifier (TID) of the calling thread.
 yara_signatures: (optional). Type: List of the Yara signatures; see below.
A list of the Yara signatures which hit on the analysis subject.

— name: (optional). Type: String.
Example: “apt_win_generic_imageStego”.
A name of the Yara signatures.
— score: (optional). Type: Integer.
Example: 75.

A score which defines how dangerous the analysis subject according to the Yara signature. Possi-
ble range from O (benign) to 100 (malicious).

— internal: (optional). Type: Boolean.
If true the signature is only for an internal usage.
* flirt_signatures: (optional). Type: List of the Yara signatures; see below.

A list of the flirt signatures which hit on the analysis subject. The flirt signatures recognize a known
functions.
— name: (optional). Type: String.

113

Example: ascii_strnicmp”’

Name of the signature.

86 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

* keyboard_capture: (optional). Type: List of keyboard actions captured; see below.
A list of keyboard actions sent during the analysis which were seen on the behavior.
— word: (optional). Type: String.
Example: “8989-8408-5161-4765”
Word captured by sample during analysis.
— word_type: (optional). Type: String.
Example: “Credit Card”

Type of word that was captured.

3.7.2 Action Resources

Information about action resource types
Action resource contents
¢ file_resource:
Type: List with file information attributes.
File resource information
— file_id. Type: Integer
Example: 1.

An identifier for the file resource used, see files.

status. (optional) Type: String
Example: “STATUS_UNKNOWN”.

Return value for a file operation.

file_attributes. (optional) Type: List of Strings
Example: “FILE_ATTRIBUTE_ARCHIVE”, “FILE_ATTRIBUTE_HIDDEN”.
Attributes of the file.

iostatus. (optional) Type: List of strings
Example: “FILE_CREATED”, “FILE_OPENED”

Completion status of the file operation.

pe_resources. (optional) Type: List.

List of resources in the PE, see pe-resources.

pe_overlay_stats. (optional) Type: Dictionary

Statistics about the file (if it is a PE), see pe-stats.

disposition. (optional) Type: List of strings
Example: “FILE_OVERWRITE_IF”, “FILE_OPEN".

How to proceed when opening the file.

3.7. PE Resource Stats information 87

Lastline Analyst APl Documentation, Release 2.0

— options. (optional) Type: List of strings
Example: “FILE_NON_DIRECTORY_FILE”, “FILE_SYNCHRONOUS_IO_NONALERT”.
Creation options for the file.
* registry_resource: Type: List with registry key information.
A registry key used by the analysis subject.
- key. Type: String.
Example: “HKLM\SOFTWARE\MICROSOFT\WINDOWS NT\CURRENTVERSION\DRIVERS32”.
A registry key.
— value: (optional). Type: String.
Example: “wave9”.
A registry value.
— data: (optional). Type: String or Integer.
Example: 1, “mso.dll”.
A data of registry value.
* mutex_resource: Type: List with mutex information.
Mutex information from a mutex used by the analysis subject.
— mutex_name: Type: String.
Example: “Mutex1”.
Name of the mutex synchronization object.
* error_resource: Type: List with system error information.

An exceptions raised by the analysis subject.

addr: (optional). Type: Hexadecimal number.
Example: 0x7¢832297.

Instruction address raising the exception.

code: (optional). Type: Hexadecimal number.
Example: 0xc0000005.

Microsoft Windows exception code.

name: (optional). Type: String.
Example: “STATUS_ACCESS_VIOLATION".

Microsoft Windows exception name.

exception_name: (optional). Type: String.

Example: “Exception 0xc0000005 (STATUS_ACCESS_VIOLATION) at 0x7c832297 (sub-
ject_id: 2)”.

Full exception information.

exception_count: (optional). Type: Integer.

Example: 1.

88 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

Number of exception occurrences.
— errors: (optional). Type: List.
Example: “SEM_NOOPENFILEERRORBOX?”, “SEM_FAILCRITICALERRORS”.
Microsoft Windows process error modes.
* process_resource: Type: Process information
A Process used by the analysis subject; see process.
* hook_resource: Type: List with hook information.
A Hook set by the analysis subject.
— hooks:
Type: List of hooks set in the system
Example: “WH_KEYBOARD_LL”,”"WH_KEYBOARD”,”"WH_MOUSE”.
A list of strings containing the hooks set in system.
 service_resource: Type: List with service information.

An service used by the analysis subject.

service_file: (optional). Type: Integer
Example: 1.
File ID. see files.

service_name: (optional). Type: String.
Example: “WNKiserv”

A display name to be used by user interface programs to identify the service.

start_type: (optional). Type: Integer.
Example: 0x00000002 (SERVICE_FILE_SYSTEM_DRIVER)

change: (optional). Type: String.
A change of the service made by the analysis subject.
¢ search_resource: Type: List with file search information.
Search made by the analysis subject.
— searched_data: (optional). Type: List of data searched
Example: “C\TEST.DLL”,”D:*”"CA\WINDOWS".
A list of strings containing the searched information.
* network_resource: Type: A network connection see; network connection.

Network connection done by the analysis subject using a protocol that is not parsed into a more specific
network action type.

* dns_resource: Type: DNS query; see DNS query.
DNS query done by the analysis subject.
* string_cmp_resource: Type: List with string comparison attributes.

A string comparison.

3.7. PE Resource Stats information 89

Lastline Analyst APl Documentation, Release 2.0

name: (optional). Type: String.
Example: “shlwapi.dll.StrStr_generic”.

A possible name of the string comparison function. Usually defined by a flirt signature
flirt_signatures.

src_string: (optional). Type: String.
Example: “C:\Users\Public\Desktop”.

A comparable string 1.

dst_string: (optional). Type: String.
Example: “%SYSTEMROOT%”.

A comparable string 2.

src_sources: (optional). Type: List of strings.
Example: “\Registry\Machine\Software\Classes.dot\Icon”,”Command line”.

A alist of possible sources (from where this string could be read) for string 1.

dst_sources: (optional). Type: List of strings.
Example: “\Registry\Machine\Software\Classes.dot\Icon”,”Command line”.

A alist of possible sources (from where this string could be read) for string 2.

3.7.3 Windows Process

Information on a Windows process.
Windows process contents
e process_id. Type: String.
Example: “1376”.
Windows process identifier (PID).
* executable: (optional). Type: File; see file_reads.
Process image information.
e arguments: (optional). Type: String.
Example: “C:\subject.exe argl arg2”.
Full command line used to start the analysis subject.
* bitsize: (optional). Type: Integer.
Example: 32.
Process bit-size (32bit or 64bit process).
« analysis_subject_id: (optional). Type: Integer.
Example: 2.

Identifier of the analysis subject within the analysis report if the process belongs to an analysis subject
monitored in the analysis run.

920 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

3.8 Report Format /l-osx-timeline-based

This analysis report format applies to a dynamic analysis run on a OSX platform. Differently from Report Format
ll-int-osx, this report focuses on the timeline of different actions and exposes behavior as a series of events associated
with the timestamp when each event was observed.

In addition to the report fields that all report formats share (see Analysis Report Format), the report contains a number
of different fields with details about the analysis run.

Report contents
* remarks: (optional). Type: Dictionary.
— info (optional). Type: List of strings.
Example: “Text]1”, Text2”.
A list of information strings concerning the analysis run.
— warning (optional). Type: List of strings.
Example: “Textl”, Text2”.
A list of warning strings concerning the analysis run.
* overview. Type: Dictionary.
— analysis_engine. Type: String.
Example: “LLama - OSX”.
Name of the analysis engine used for generating the result.
— analysis_engine_version. Type: String.
Example: “1.2.4”.
Version of the analysis engine used for generating the result.
— analysis_start. Type: Date-Time.
Example: “2013-10-05 14:21:01.928894".
Start timestamp of the analysis run.
— analysis_end. Type: Date-Time.
Example: “2013-10-05 14:22:02.935794”.
End timestamp of the analysis run.
« analysis_subjects. Type: List of analysis subjects; see OSX Analysis Subject Format.
A list of programs monitored during the analysis run.
« files. Type: List of files; see below.
— file_id. Type: Integer.
Example: “1”.
ID used to identify the file.
— filename. Type: String.
Example: “foo”.

A file name. Could be absolute or relative path.

3.8. Report Format /l-osx-timeline-based 91

Lastline Analyst APl Documentation, Release 2.0

— abs_path: (optional). Type: String.
Example: “/tmp/foo”.
An absolute file path.
— ext_info: (optional). Type: File-Info; see Static File Information.
Static file information.
 analysis_metadata: (optional). Type: List of analysis metadata; see OSX Analysis Metadata Format.

A list of artifacts generated during the analysis run. See get_result_artifact () for retrieving this
metadata.

e url_summary: (optional). Type: List of strings.
Example: “http://www.examplel.com”,’http://www.example2.com”.

Network summary of contacted URLs during analysis run.

3.8.1 OSX Analysis Subject Format

The analysis engine will monitor all analysis subjects, such as the originally started program and all child processes or
processes that a monitored program interacts with, and then list any security relevant data.

This type extends the Analysis Subject Format type with additional information on OSX analysis subjects.
Analysis subject contents
* overview. Type: Dictionary.

Overview of the analysis subject. In addition to the base format contents, the following elements are
extracted:

— process. Type: Process; see OSX Process.
Information on the OSX process.
— ext_info: (optional). Type: File-Info; see Static File Information.
Static information on the process image.
* console_output: (optional). Type: Dictionary.
Console output of the program.
— stdout: (optional). Type: String.
Example: “text written to stdout”.
Program output written to default console.
— stderr: (optional). Type: String.
Example: “text written to error console”.
Program output written to error console.
* opened_windows: (optional). Type: List of GUI-windows; see below.
A list of GUI windows opened by the analysis subject.
— title: Type: String.
Example: “Mac Viewer”.

Window title content.

92 Chapter 3. Analysis Results

http://www.example1.com
http://www.example2.com

Lastline Analyst APl Documentation, Release 2.0

— text: Type: String.
Example: “FolderView”.
Window text content.
¢ loaded_libraries: (optional). Type: List of libraries; see below.
List of library files loaded by the analysis subject.
— filename: Type: String.
Example: “/tmp/bar.so”.
Path to the library loaded by the analysis subject.
 actions: Type: List of actions; see below.

List of actions performed by the analysis subject with timeline information; see below.

id: (optional). rype: integer.

example: 1.

unique id of the action within the analysis report.
— action_name: Type: String.
Example: “FileWrite”.

Name of the action performed by the analysis_subject

action_type: (optional). Type: String
Example: “write”.

Define the type of action that is performed on the resource.

resource_type: (optional). Type: String
Example: “file_resource”.

Define the type of resource (if any) associated with this action.

timestamp: Type: Date-Time.
Example: “2013-10-05 14:21:01.928894”.

Timestamp when the action happened.

thread_id: (optional) Type: Integer.
Example: 1020.

Thread ID (within the analysis subject) that executed the action.

stack_depth: (optional) Type: Integer.
Example: 2.

Inform how many calls we are away from the first call

last_timestamp: (optional) Type: Date-Time.
Example: “2013-10-05 14:21:01.928894".

Timestamp when the action was last repeated.

3.8. Report Format /l-osx-timeline-based 93

Lastline Analyst APl Documentation, Release 2.0

— resource: (optional). Type: Resource; see Action Resources.

Information on action resource. Name of the resource will match the name passed in re-
source_type.

¢ http_conversations: (optional). Type: List of HTTP connections; see HTTP connection.

List of network connections identified to use the HTTP protocol done by the analysis subject.
* irc_conversations: (optional). Type: List of IRC connections; see IRC connection.

List of network connections identified to use the IRC protocol done by the analysis subject.
 ftp_conversations: (optional). Type: List of FTP connections; see FTP connection.

List of network connections identified to use the FTP protocol done by the analysis subject.
¢ smtp_conversations: (optional). Type: List of SMTP connections; see SMTP connection.

List of network connections identified to use the SMTP protocol done by the analysis subject.
* address_scans: (optional). Type: List of network address scans; see address scan.

List of network address scans done by the analysis subject.
* downloaded_files: (optional). Type: List of file-download tuples; see below.

List of files that were downloaded using the OSX file-download API functions. Each element is a tuple of
file-origin URL and a File element (see file_reads).

Note: This list does not contain files downloaded using other mechanisms or protocol (such as HTTP).
Those are listed in the corresponding network section.

* frequent_api_calls: (optional). Type: List of the frequent API calls; see below.
A list of the frequent API calls.

name: (optional). Type: String.
Example: “open”.

A name of the API function which was frequently called.

count: (optional). Type: String.
Example: 31440.

A number of times the API function was called.

pid: (optional). Type: Integer.
Example: 145.

OSX process identifier (PID) of the calling process.

tid: (optional). Type: Integer.
Example: 167.

OSX thread identifier (TID) of the calling thread.
 yara_signatures: (optional). Type: List of the Yara signatures; see below.
A list of the Yara signatures which hit on the analysis subject.

— name: (optional). Type: String.
Example: “apt_osx_generic_imageStego”.

A name of the Yara signatures.

94 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— score: (optional). Type: Integer.
Example: 75.

A score which defines how dangerous the analysis subject according to the Yara signature. Possi-
ble range from O (benign) to 100 (malicious).

— internal: (optional). Type: Boolean.

If true the signature is only for an internal usage.

3.8.2 Action Resources

Information about action resource types
Action resource contents
e file_resource:
Type: List with file information attributes.
File resource information
— file_id. Type: Integer
Example: 1.
An identifier for the file resource used, see files.
e process_resource: Type: Process information
A Process used by the analysis subject; see process.
» search_resource: Type: List with file search information.
Search made by the analysis subject.
— searched_data: (optional). Type: List of data searched
Example: “tmp/foo”,”/tmp/.*”.
A list of strings containing the searched information.
* network_resource: Type: A network connection see; network connection.

Network connection done by the analysis subject using a protocol that is not parsed into a more specific
network action type.

* dns_resource: Type: DNS query; see DNS query.
DNS query done by the analysis subject.

3.8.3 OSX Process

Information on an OSX process.
OSX process contents
* process_id. Type: String.
Example: “1376”.
OSX process identifier (PID).

3.8. Report Format /l-osx-timeline-based 95

Lastline Analyst APl Documentation, Release 2.0

» executable: (optional). Type: File; see file_reads.
Process image information.
e arguments: (optional). Type: String.
Example: “/tmp/test argl arg2”.
Full command line used to start the analysis subject.
« analysis_subject_id: (optional). Type: Integer.
Example: 2.

Identifier of the analysis subject within the analysis report if the process belongs to an analysis subject
monitored in the analysis run.

3.9 Report Format /l-int-win-doc

This analysis report format refers to a dynamic analysis run of opening a document using Microsoft Office on a
Microsoft Windows platform.

In addition to the report fields of Report Format ll-int-win, the report contains additional information about the ana-
lyzed document.

Report contents
« static_analysis. (optional). Type: Dictionary.
— document_content. (optional). Type: String.
Example: “This is a document analyzed by Microsoft Windows”.

A text portion extracted from the analyzed document

3.10 Report Format /l-int-apk

This analysis report format applies to a dynamic analysis run on a Android platform (Deprecated). This type extends
the Analysis Report Format type.

Report contents
* api_level: (optional). Type: Integer.
Example: 3.
Android API level used by this analysis run.
« analysis_subjects. Type: List of analysis subjects; see Android Analysis Subject Format.

A list of programs monitored during the analysis run.

3.10.1 Android Analysis Subject Format

The analysis engine will monitor all analysis subjects, such as the originally started program and all child processes or
processes that a monitored program interacts with, and then list any security relevant data.

This type extends the Analysis Subject Format type with additional information on Android analysis subjects.

Analysis subject contents

96 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

* overview. Type: Dictionary.

Overview of the analysis subject. In addition to the base format contents, the following elements
are extracted:

— program_name. Type: String.
Name of the analyzed program.
« valid_manifest: (optional). Type: Boolean.
True if the Android package has a valid manifest.
« valid_zipfile: (optional). Type: Boolean.
True if the Android package is a valid ZIP file.
« valid_androguard_zipfile: (optional). Type: Boolean.

True if the Android package is a valid ZIP file that can be processed by AndroGuards analysis
tool.

* uses_native_code: (optional). Type: Boolean.

True if the Android package makes use of native code.
¢ uses_dynamic_code: (optional). Type: Boolean.

True if the Android package makes use of dynamic code.
 uses_reflection: (optional). Type: Boolean.

True if the Android package makes use of reflection.
e uses_crypto: (optional). Type: Boolean.

True if the Android package makes use of crytographic functionality.
« certificate: (optional). Type: Dictionary.

The certificate included in the Android pacakge.

valid_from: (optional). Type: String.
Example: “Sat Jan 01 00:00:00 GMT 2011”.

The certificate validity start-date as extracted from the certificate.

valid_until: (optional). Type: String.
Example: “Sat Dec 23 01:23:45 GMT 2045”.

The certificate validity end-date as extracted from the certificate.

owner: (optional). Type: String.
Example: “CN=John Doe, OU=android, O=My Apps, L=Dallas, ST=TX, C=US".

The certificate owner as extracted from the certificate.

issuer: (optional). Type: String.
Example: “CN=John Doe, OU=android, O=My Apps, L=Dallas, ST=TX, C=US".

The certificate issuer as extracted from the certificate.

serial_number: (optional). Type: String.
Example: “4d1a9bb1”.

The certificate serial-number as extracted from the certificate.

3.10.

Report Format /l-int-apk 97

Lastline Analyst APl Documentation, Release 2.0

— md5: (optional). Type: Hexadecimal string/hash.
Example: “AA:CC:12:FE:BB:C1:87:3E:08:44:DF:12:D4:6F:39:43”.
The certificate MDS5 hash as extracted from the certificate.
— shal: (optional). Type: Hexadecimal string/hash.
Example: “AA:CC:12:FE:BB:C1:87:3E:08:44:DF:12:D4:6F:39:43:BB:C4:46:F9”.
The certificate SHA1 hash as extracted from the certificate.
* required_features: (optional). Type: List of strings.
Example: “android.hardware.touchscreen”,”’android.hardware.location.gps”.
A list of Android features (by name) required by the Android application.
e permissions: (optional). Type: List of permissions; see below.
Permissions required/used by the Android application.
— permission: (optional). Type: String.
Example: “android.permission. WRITE_EXTERNAL_STORAGE”.
Name of the permission.
— calls: (optional). Type: List of calls; see Android Function Call.

Function calls inside the Android application that indicate the use of the given permis-
sion.

 activities: (optional). Type: List of activities; see below.
Activities supported by the Android application.
— name: (optional). Type: String.
Example: “MainLogin”.
Name of the activity.
— intent_filters: (optional). Type: List of intent-filters; see Android Intent Filter.
Intent-filters registered on the activity.
¢ broadcast_receivers: (optional). Type: List of broadcast-receivers; see below.
Broadcast-receivers supported by the Android application.
— name: (optional). Type: String.
Example: “com.amazon.inapp.purchasing.ResponseReceiver”.
Name of the broadcast-receiver.
— intent_filters: (optional). Type: List of intent-filters; see Android Intent Filter.
Intent-filters registered on the broadcast-receiver.
 service_creates: (optional). Type: List of services. See below.
A list of services created by the analysis subject.
— service_name: (optional). Type: String.
Example: “com.movend.market_billing.BillingService”

The name of the service.

98 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— intent_filters: (optional). Type: List of intent-filters; see Android Intent Filter.
Intent-filters registered on the service.
« service_starts: (optional). Type: List of services. See service_creates.
A list of services started by the analysis subject.
« file_reads: (optional). Type: List of files. See below.
A list of files read by the analysis subject.
— filename: (optional). Type: String.
Example: “/data/data/com.android.mms/shared_prefs/com.android.mms_preferences.xml”
The name of the file.
« file_writes: (optional). Type: List of files. See file_reads.
A list of files written by the analysis subject.
« file_deletes: (optional). Type: List of files. See file_reads.
A list of deleted written by the analysis subject.
« file_leaks: (optional). Type: List of files. See file_reads.
A list of files read and leaked to an external party by the analysis subject.
 urls: (optional). Type: List of strings.
Example: “http://test.com”, https://test.org”.
A list of URLs embedded inside the Android application.
* dns_queries: (optional). Type: List of DNS queries; see DNS query.
List of DNS queries done by the analysis subject.
* network_connections: (optional). Type: List of network connections; see network connection.

List of network connections done by the analysis subject using a protocol that is not parsed into
a more specific protocol type.

¢ http_conversations: (optional). Type: List of HTTP connections; see HTTP connection.

List of network connections identified to use the HTTP protocol done by the analysis subject.

3.10.2 Android Function Call

Information about a function call.
Function call contents
* call_site: (optional). Type: String.
Location (module/function name) of the call.
* called_function: (optional). Type: String.
Called function (module/function name) that requires the given permission.
« call_site_object: (optional).

call_site parsed to object. Added for compatibility.

3.10. Report Format /l-int-apk 99

http://test.com
https://test.org

Lastline Analyst APl Documentation, Release 2.0

— function_name: (optional). Type: String.
Example: “disableKeyguard”.

The call function name.

arguments: (optional). Type: List of argument dictionaries.

Example: “[{‘type’: ‘int’}, {‘type’: ‘java.lang.String’}]”.

Function arguments (types only).

return_type: (optional). Type: String.

Example: ‘java/lang/String’.

Function return type.

class_name: (optional). Type: String.

Example: “rnasdvs.addB”.
Class which function belongs to.

module_name: (optional). Type: String.

Example: “com.tartiap.Innhdatu”.

Module for class and function.

* called_function_object: (optional).
called_function parsed to object. Added for compatibility.

— function_name: (optional). Type: String.
Example: “disableKeyguard”.

The call function name.
arguments: (optional). Type: List of argument dictionaries.

Example: “[{‘type’: ‘int’}, {‘type’: ‘java.lang.String’}]”.

Function arguments (types only).

return_type: (optional). Type: String.

Example: ‘java/lang/String’.

Function return type.

class_name: (optional). Type: String.

Example: “rnasdvs.addB”.
Class which function belongs to.

module_name: (optional). Type: String.

Example: “com.tartiap.Innhdatu”.

Module for class and function.

Chapter 3

. Analysis Results

100

Lastline Analyst APl Documentation, Release 2.0

3.10.3 Android Intent Filter

Intent-filters registered on the Android activities, broadcast-receivers or services.
Intent filter contents
* action: (optional). Type: String.
Example: “android.intent.action. MAIN”.
Intent-filter action.
* category: (optional). Type: String.
Example: “android.intent.category. LAUNCHER”.

Intent-filter category.

3.11 Report Format /l-int-archive

This analysis report format applies to a run of the archive extractor. This type extends the Analysis Report Format
type.
Report contents
 extracted_files. Type: List of extracted files. See Extracted Files.
A list of files extracted from the archive.
« full_archive_analysis. Type: List of hexadecimal strings.
Example: [*“7065a3ba0c729ad5981a1e1072df710d”’].

A list of unique identifiers for analysis submissions that are associated with analyzing the archive as a
whole. This value can be used to obtain a report for the corresponding child task (see get_result ()).

3.11.1 Exiracted Files

A file that was extracted from the submitted archive.
Extracted file contents
* mdS Type: Hexadecimal string.
Example: “748cb82987899a164c2f6e7985fffecS”.
An md5 hash of the file content.
* shal Type: Hexadecimal string.
Example: “066e791be6fb28063fc643cea658bf70d193b895.
A shal hash of the file content.
* mime_type: (optional). Type: String.
Example: “application/vnd.android.package-archive”.

The MIME type of the extracted file.

3.11. Report Format /l-int-archive 101

Lastline Analyst APl Documentation, Release 2.0

e task_uuid. Type: Hexadecimal string.
Example: 7065a3ba0c729ad5981al1e1072df710d.

Unique identifier for the analysis submission of the extracted file. This value can be used to obtain a report
for the child task (see get_result ()).

3.12 Report Format /I-web

This analysis report format refers to a dynamic analysis run of a web page or of a PDF document.

In addition to the report fields shared by all report formats (see Analysis Report Formart) the report contains a number
of different fields with details specific to the analysis run.

Reports may include fields not described here: they are to be considered as experimental or deprecated and SHOULD
be ignored.

Report contents
 analysis. Type: Dictionary.

— applets. Type: Dictionary with applet information; see Applets Format for details.
A dictionary giving details about the contents of applets found during the analysis.

— artifacts (deprecated). Type: List.
This field is deprecated and should be ignored.

— dropped_files. Type: List of dropped files; see Files Dropped to Disk Format for details.
The list of files that were dropped to disk during the analysis.

— evals. Type: List of dynamically evaluated code; see Code Format for details.

A list with details about code that was dynamically evaluated during the analysis, via eval(),
setTimeout(), or similar mechanisms.

— exploits. Type: List of exploited vulnerabilities; see Exploits Format for details.
A list describing each vulnerability that was was found to be exploited during the analysis.
— hidden_elements. Type: List of hidden HTML elements; see Hidden Element Format for details.
A list with details about hidden HTML elements that cause external resources to be fetched.
— network. Type: Dictionary describing the network activity that was recorded during the analysis.
requests: Type: List of HTTP requests; see Request Format.
The list of HTTP requests and responses that were performed during the analysis.
— new_functions. Type: List of dynamically evaluated code; see Code Format for details.

A list with details about code that was dynamically evaluated during the analysis, via new Func-
tion() or similar mechanisms.

— plugins. Type: List of plugins; see Plugin Format.
The list of plugins and ActiveX controls that were loaded during the visit.

— processes. Type: List of processes that were unexpectedly spawned during the analysis; see Processes
Unexpectedly Spawned during the Analysis Format.

102 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

— resources. Type: List of local resources that were accessed during the analysis; see Local Resource
Format.

The list of local resources that were accessed using the res.// protocol during the analysis.
— result. Type: Dictionary.
A dictionary that provides additional information about the analysis results.
+ analysis_ended Type: String
Example: “2013-10-03 11:36:42+0000”

Time when the analysis ended in the analysis (UTC timezone).

*

classification. Type: String:

Deprecated: this field should be ignored in favor of the top-level score file; see Contents of
response.

Example: “malicious”

*

detector. Type: String
Example: “2.6”
The internal version of the URL and PDF analyzer.

*

explanation. Type: String

Deprecated: this field should be ignored in favor of the top-level score file; see Contents of
response.

Example: “exploits”

shellcodes. Type: List of shellcodes; see Shellcode Format.

statics. Type: List of code that was statically included in a visited page; see Code Format for details.

A list with details about code that was statically found during the analysis.

strings. Type: List of strings that were found during the analysis; see String Format for details.

A list with details about interesting strings that were found during the analysis in the browser’s
memory.

subject Type: Dictionary describing the analysis subject.
+* mdS. Type: hexadecimal string.
Example: 6705f99eccedeac20e969bef954c5fb0
MDS5 of the input file; not present in URL submissions
+ type. Type either “file” or “url”
Example: “url”
% url. Type URL if the engine analyzed a URL submission; null otherwise.

— text_from_documents. Type: List of textual content extracted from PDF; see Textual Content For-
mat.

— urls_from_documents. Type: List of links extracted from PDF; see Links Extracted from PDFs
Format.

3.12. Report Format /l-web 103

Lastline Analyst APl Documentation, Release 2.0

— writes. Type: List of code that was dynamically evaluated in a visited page, via document.write; see

Code Format for details.

A list with details about code that was dynamically evaluated via document.write.

3.12.1 Exploits Format

A vulnerability that was exploited during the analysis.
 exploit_id. Type: String.
Example: “81”
The internal unique identifier for this vulnerability.
e from_url. Type: String.
Example: “http://evil.example.com/”.
The URL where the exploit for this vulnerability was found.
¢ reference_id. Type String.
Example: “CVE-2009-0927"
The public vulnerability ID, such as its CVE number.
¢ reference_url. Type: String.
Example: “http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2009-0927”

A URL where more information about the vulnerability can be found.

3.12.2 Request Format

A request that was issued during the analysis.
* content_mdS. Type: Hexadecimal string.
Example: 6705f99eccedeac20e969bef954c5{b0.
The MDS5 hash of the response content.
» content_shal. Type: Hexadecimal string.
Example: “c3499c2729730a7t807efb8676a92dcb6f8a3{8f.
The SHA1 hash of the response content.
* content_type. Type: String.
Example: “application.octet-stream”.
The content type of the response.
* ip. Type: String.
Example: “192.0.2.1”.
The IP address of the contacted server; null if the domain name resolution failed.
e parent_url. Type: String.

Example: “http://example.com”.

104 Chapter 3

. Analysis Results

http://evil.example.com/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0927
http://example.com

Lastline Analyst APl Documentation, Release 2.0

The URL that caused the current URL to be fetched; the special value “USER_URL” is reserved for the
first URL (which was submitted by the user).

* relation_type. Type: Integer.

Example: 1

Specifies the mechanism that caused the browser to fetch the content of the URL provided in the ur/ field.
It can be one of:

0 (IFRAME): through an HTML iframe tag

1 (SCRIPT_SRC): through an HTML script tag

2 (WINDOW_OPEN): by executing window.open in JavaScript

3 (FRAME): through an HTML frame tag

4 (REDIRECTION): via a redirection (e.g., a 302 response from the server)
5 (OTHER): any other method

6 (USER): direct user request

7 (AJAX): through an Ajax request

8 (PLUGIN): via plugin request

9 (IMAGE): through an img HTML tag

10 (JS): by changing the location in JavaScript (for example, location.setUrl, etc.)
11 (LINK): via an HTML link

12 (CSS): via some CSS construct

13 (REFRESH): by refreshing the page

* relation_type_str. Type: String.
Example: “USER”

Specifies the mechanism that caused the browser to fetch the content of the URL provided in the url field.
In comparison to the relation_type field, the mechanism is specified as a human-friendly string, rather than
as an integer.

 status. Type: Integer.
Example: 200

The HTTP status code provided by the server.

e url. Type: String.

Example: “http://www.example.com”.

The URL that was requested during the analysis.

3.12.3 Plugin Format

A plugin or ActiveX control that was loaded during the visit of a page.

« attributes Type: List list of attributes.

For each attribute, the report specifies:

3.12. Report Format /l-web 105

http://www.example.com

Lastline Analyst APl Documentation, Release 2.0

— name. Type: String.
Example: “propDownloadUrl”.
The name of the attribute.
— values. Type: List of String.
Example: “http://www.example.com/evil.exe”.
The values assigned to this attribute.
¢ classid. Type: String.
Example: “C1B7E532-3ECB-4E9E-BB3A-2951FFE67C61”.
The plugin/ActiveX classid.
* methods. Type: List of methods calls
For each method, the report specifies:
— calls. Type: List of method calls. Each method call consists of a list of strings.
Example: “%45000f”
— name. Type: String.
Example: “Collab.getlcon”.

The name of the invoked method.

3.12.4 Shellcode Format

Shellcode extracted from memory during the analysis.

e from_url. Type: String.

Example: “http://evil.example.com/”.

The URL where the shellcode was found.
¢ shellcode_ascii. Type: String.

The shellcode as a printable ASCII string.
¢ shellcode_base64. Type: String.

The shellcode base64-encoded.
* shellcode_hex. Type: Hexadecimal string.

The shellcode as an hexadecimal string.

3.12.5 Textual Content Format

Textual content that has been extracted from PDF files.
e doc_mdS5. Type: Hexadecimal string.
Example: “c9d2242bb263603b80916fec27e9f2bb”.

The MD)5 hash of the document from where the content was extracted.

106 Chapter 3

. Analysis Results

http://www.example.com/evil.exe
http://evil.example.com/

Lastline Analyst APl Documentation, Release 2.0

e doc_shal. Type: Hexadecimal string.

Example: “382920093773c3e4a7d571f3cd6¢c5326cadbe5c2”.

The SHA1 hash of the document from where the content was extracted.
e text. Type: String.

Example: “This is a test PDF file”.

The actual text content extracted from the document.

3.12.6 Links Extracted from PDFs Format

Links that have been extracted from PDF files.
¢ child_url_type. Type: String.
Example: “url-in-pdf”.

The type of link that was extracted. Currently, the only value supported is “url-in-pdf”, which indicates
that the link was extracted from a PDF document.

* source_url. Type: String.
Example: “file://ed1fd0c15690007009c4cadcbd677c01/”.
The URL of the document that contains the link.

* task_uuid (optional). Type: Hexadecimal string.
Example: 7065a3ba0c729ad5981a1e1072df710d.

Unique identifier for the analysis submission of the extracted file. This value can be used to obtain a report
for the child task (see get_result ()).

e url. Type: String.
Example: “http://example.com/”.
The link’s URL.

3.12.7 Processes Unexpectedly Spawned during the Analysis Format
Processes that have been spawned unexpectedly during the analysis and that are typically associated with exploitation
activities.
e command_line. Type: String.
Example: “\c script.bat”
The command line that was executed.
 application_name. Type: String.
Example: “C:\Users\ExampleUser\AppData\Local\Temp\52EQ.tmp”
The name of the application that was unexpectedly launched.
* task_uuid (optional). Type: Hexadecimal string.
Example: 7065a3ba0c729ad5981a1e1072df710d.

Unique identifier for the analysis submission of the extracted file. This value can be used to obtain a report
for the child task (see get_result ()).

3.12. Report Format /l-web 107

http://example.com/

Lastline Analyst APl Documentation, Release 2.0

3.12.8 Files Dropped to Disk Format

Files that have been saved to disk during the analysis.

* filename. Type: String.
Example: “C:\Users\Johnson\Downloads\nQ30”
The filename of the dropped file.

e mdS: Type: Hexadecimal string.
Example: “e83bbd9d04cf15ee35a2911be221ae3b”.
The MD5 hash of the dropped file.

* shal: Type: Hexadecimal string.
Example: “6cf755e7ada47b9bea97dadd65f6140ed1863ca2”.
The SHA1 hash of the dropped file.

* task_uuid (optional). Type: Hexadecimal string.
Example: 7065a3ba0c729ad5981ale1072df710d.

Unique identifier for the analysis submission of the dropped file. This value can be used to obtain a report
for the child task (see get_result ()).

3.12.9 Code Format

Code evaluated during the analysis.
e code. Type: String.
Example: “alert(‘test’)”
The raw code content.
 code_beautified. Type: String
Example: “alert(‘test’)”
A beautified version of the raw code content; null, if it was not possible to beautify the original code.
* codecluster_result. Type: Object with the result of the code clustering; see Codecluster Format for details.

If the original code is found to be similar to one of the code clusters that we track, this field will contain
more details about the matching cluster.

* media_type. Type: String.
Example: “application/javascript”.
The media type of the code.
 source_url. Type: String.
Example: “http://example.com”.

The URL of the resource that contains the code.

108 Chapter 3. Analysis Results

http://example.com

Lastline Analyst APl Documentation, Release 2.0

3.12.10 String Format

Strings found in the browser’s memory during the analysis.
* source_url. Type: String.
Example: “http://example.com”.
The URL of the resource being evaluated when the string was found.
* str_len. Type: Integer.
Example: 42.
The length of the string.
* str_type. Type: String.

Example: “s”.

The type of the string: ““s” for a string that was statically found in the content of a visited resource; “d” for
a string that was found while dynamically evaluating a visited resource.

e value. Type: String.
Example: “Test”.

The actual string value.

3.12.11 Local Resource Format

A local resource that was accessed via the res.// protocol.

 category. Type: String.
Example: “Debugging”.
The resource category.

e path. Type: String.
Example: “res://C:\Program Files (x86)\Fiddler2\Fiddler.exe/#3/#32512”
The resource path.

e program. Type: String.
Example: “Fiddler”.

The program containing the resource.

3.12.12 Hidden Element Format

A hidden element that causes external resources to be fetched.
* element_type. Type: String.
Example: “iframe”.
The element type, for example “iframe” or “frame”.
* resource_url. Type: String.
Example: “http://example.com”.

The URL fetched by the hidden element.

3.12. Report Format /l-web 109

http://example.com
res://C
http://example.com

Lastline Analyst APl Documentation, Release 2.0

 source_url. Type: String.

Example: “http://example.com”.

The URL containing the hidden element.
* tag. Type: String.

Example: “<iframe class="hidden” src="http://example.com”></iframe>".

The hidden element’s code.

3.12.13 Codecluster Format

Information about a code cluster match.
* description. Type: String.
Example: “Code redirecting to exploit kits”.
A description of the matching code cluster.
* id. Type: String.
Example: “ek_redirector”.
The ID of the matching code cluster.
* score. Type: Integer.

Example: 70.

The maliciousness score associated to the matching cluster.

3.12.14 Applets Format

Information about applets.

The dictionary contains a (key, value) pair for every applet found during the analysis. The key is file:// followed by

the MDS5 hash of the applet file. The value is a dictionary comprising the following fields:
* contents. Type: List of content details.
Details about individual applet contents.

— content_type. Type: String.
Example: “application/x-unknown-mime-type”.
The content type of the applet element.

— length. Type: Integer.
Example: 1024.
The length of the applet element.

— mdS5. Type: Hexadecimal string.
Example: “e83bbd9d04cf15ee35a2911be221ae3b”.
The MD5 hash of the applet element.

110 Chapter 3

. Analysis Results

http://example.com
http://example.com

Lastline Analyst APl Documentation, Release 2.0

— name. Type: String.
Example: “META-INF/MANIFEST.MF”.
The name of the applet element

— shal. Type: Hexadecimal string.
Example: “6cf755e7ada47b9bea97dadd65f6140ed1863ca2”.
The SHA1 hash of the applet element.

— result. Type: Integer
Example: 1.

The applet class: 1 if malicious, 0 if benign.

3.13 Report Format //-static

This analysis report format refers to a static analysis run of a PE or Mach-O executable file.

In addition to the report fields shared by all report formats (see Analysis Report Format) the report contains a number
of different fields with details specific to the analysis run.

Reports may include fields not described here: they are to be considered as experimental or deprecated and SHOULD
be ignored.

Report contents
e analysis. Type: Dictionary.
— file_information. Type: Dictionary.
Basic information about the file contents.
= mdS. Type: String.
md5 hash of analysis subject.
+ shal. Type: String.
shal hash of analysis subject.
+ sha256. Type: String.
sha256 hash of the analysis subject.
« size. Type: Integer.
The analysis subject size (bytes).
+ ssdeep. Type: String.

ssdeep fuzzy hash of the analysis subject. eg:
“1536:6UqqX4VONpYgNo+5DCGVM2/gXagwIm3rQcG/K:6UqqoVO/YgNf5SDIVM2/gBwMrQf”

+ magic. Type: String.
analysis subject magic description. eg: “Mach-O executable bundle”
— exif. Type: Dictionary with Exiftool tag information; see ExifTool EXE tag format for details.

Exiftool EXE tag information.

3.13. Report Format //-static 111

Lastline Analyst APl Documentation, Release 2.0

— authenticode. Type: Dictionary.

Authenticode signature information for analysis subject.

+ authentihash Type: String.
Authentihash for analysis subject.

— pefile. Type: Dictionary.

Dictionary of information specific for PE files.

exports. Type: List of PE symbol exports; see PE Export format for details.
List of the symbols exported by the PE file.

% imports. Type: List of symbol imports; see PE Import format for details.
List of the symbols imported by the PE file.

+ file_version_properties. Type: Dictionary; see File Version Properties format for details.
Information from the PE file version information resource

* header. Type: Dictionary; see PE Header format for details.
PE header information.

+ sections. Type: List of sections in PE file; see PE Section format for details.
List of sections in PE file.

resources. Type: Dictionary; see PE Resources format for details.
Resources contained in PE file.

% debug_details: Type: Dictionary; see PE Debug Details format. for details.
Debug information about PE file.

+ imphash. Type: String.
Import hash of PE file.

3.13.1 ExifTool EXE tag format

Dictionary with information on the EXE file from Exiftool. More information on these tags is available at https:
/lwww.sno.phy.queensu.ca/~phil/exiftool/TagNames/EXE.html. Not all analysis subjects will contain all tags.

« file_type. Type: String.
The type of the file analysis subject.
« file_type_extension. Type: String.
The File extension for the analysis subject.
* mime_type. Type: String.
MIME type for analysis subject.
¢ machine_type. Type: String.
CPU type for analysis subject.
* timestamp. Type: String.

File creation timestamp for analysis subject.

112 Chapter 3. Analysis Results

https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/EXE.html
https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/EXE.html

Lastline Analyst APl Documentation, Release 2.0

image_file_characteristics. Type: String.

Bitwise characteristics flags for image file (hexadecimal).

pe_type. Type: String.
Specific PE type.
linker_version. Type: String.
Linker version.
code_size. Type: Integer.
Size of source code.
initialized_data_size. Type: Integer.
Size of initialized data.
unitialized_data_size. Type: Integer.
Size of uninitialized data.
entry_point. Type: String.
Entrypoint (hexadecimal) address.
os_version. Type: String.
OS Version.
image_version. Type: String.
Image Version.
subsystem_version. Type: String.
Subsystem Version.
subsystem. Type: String.
Name of Subsystem.
file_version_number. Type: String.
File Version.
product_version_number. Type: String.
Product Version.

file_flags_mask. Type: String.

Mask to apply to file flags (hexadecimal).

file_flags. Type: String.
File Flags.
file_os. Type: String.
Name of OS.
object_file_type. Type: String.
Type of object file.
file_subtype. Type: Integer.
Subtype of file.

3.13

. Report Format /I-static

113

Lastline Analyst APl Documentation, Release 2.0

build_date. Type: String.

Date of build.
build_version. Type: String.

Version of build.
character_set. Type: String.

File character set.
comments. Type: String.

Comment from PE resource string.
company_name. Type: String.

Company name from PE resource string.
copyright. Type: String.

Copyright message from PE resource string.
file_description. Type: String.

File description from PE resource string.
file_version. Type: String.

File version from PE resource string.
internal_name. Type: String.

Internal name from PE resource string.
language_code. Type: String.

Language code from PE resource string.
legal_copyright. Type: String.

Legal copyright from PE resource string.
legal_trademarks. Type: String.

Legal trademarks from PE resource string.
original_filename. Type: String.

Original filename from PE resource string.

private_build. Type: String.

Private build information from PE resource string.

product_name. Type: String.

Product name from PE resource string.
product_version. Type: String.

Product version from PE resource string.
special_build. Type: String.

Special build info from PE resource string.
cpu_architecture. Type: String.

CPU Architecture for MachO files.

114

Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

* cpu_byte_order. Type: String.

CPU byte order for MachO files.
* cpu_count. Type: String.

CPU count for MachO files.
e cpu_type. Type: String.

CPU Type for MachO files (eg: ‘x86’).

e cpu_sub_type. Type: String.

CPU SubType for MachO files (eg: ‘i386°).

* object_flags. Type: String.
Object Flags for MachO files.

3.13.2 File Version Properties format

Dictionary of information from the PE file version information resource

* copyright. Type: String.
PE copyright information

* *version. Type: String.
PE version information

* internal_name. Type: String.
PE internal filename.

* original_filename. Type: String.

PE original filename.

3.13.3 PE Header format

Dictionary of PE header information.

e compilation_timestamp. Type: String.
Date/time of PE compilation.

e number_of_sections. Type: Integer.
Number of sections in PE file.

* target_machine. Type: String.
Target CPU type of PE file.

* entry_point_address. Type: String.

Entry point of PE file (hexadecimal).

3.13. Report Format /I-static

115

Lastline Analyst APl Documentation, Release 2.0

3.13.4 PE Resources format

Dictionary of resources contained in PE file.
e all Type: List of resources; see PE Resource format. for details.

* resource_count_by_language. Type: List of resources by language; see PE Resource By
details.

* resource_count_by_type. Type: List of resources by resource type; see PE Resource
details.

3.13.5 PE Import format

Dictionary of information about symbols imported by this PE file.
* functions. Type: List of imported functions; see PE Function format for details.
List of the functions imported by this PE file.
e dll_name. Type: String.
Name of the imported dll.

3.13.6 PE Function format

Dictionary of information about a function imported by this PE file.
* name. Type: String.

Name of the function.

3.13.7 PE Export format

Dictionary of information about symbols exported by this PE file.
 ordinal. Type: Integer.
PE symbol export ordinal index.
e virtual_address. Type: Integer.
The virtual address of the exported entry point.
e name. Type: String.

Name of the exported symbol.

3.13.8 PE Section format

Dictionary of information about the sections in the PE file.
* name. Type: String.
Name of the section.
e virtual_address: Type: String.

virtual address of this section (hexadecimal).

Language format. for

By Type format. for

116 Chapter 3

. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

* entropy: Type: Floating-point number.
entropy of the section.
* raw_size: Type: String.
Actual size of the section (hexadecimal).
* virtual_size Type: String.
Virtual size of the section (hexadecimal).
e mdS. Type: String.

md5 of the section.

3.13.9 PE Resource format.

Dictionary of information about a PE resource.
e sha256. Type: String.
sha256 hash of resource.
« file_type. Type: String.
File type of resource (eg: ‘data’ or ‘ASCII text’).
* type. Type: String.
Type of resource (eg: ‘RT_ICON’ or ‘RT_MANIFEST’).
* language. Type: String.

Language for resource.

3.13.10 PE Resource By Language format.

Dictionary of counts for resources by language.
e count. Type: Integer.
Number of resources in nominated language.
 language. Type: String.

Language of resource.

3.13.11 PE Resource By Type format.

Dictionary of counts for resources by resource type.
e count. Type: Integer.
Number of resources in nominated type.
* type. Type: String.
Type of resource (eg: ‘RT_ICON’ or ‘RT_MANIFEST’).

3.13. Report Format //-static 117

Lastline Analyst APl Documentation, Release 2.0

3.13.12 PE Debug Details format.

Debug information about PE file
e pdb_path. Type: String.
Path to PDB debug file.
e guid. Type: String.
GUID from PDB debug file.

3.14 Report Format /l-ioc-json

The Lastline Analyst API allows extracting Indicators of Compromise (I0C) from analysis reports. These IOC reports
are available in three formats:

e Structured Threat Information Expression (STIX),
* Open Indicators of Compromise (OpenlOC), and
¢ Lastline IOC (format described in more detail below).

The OpenlOC and STIX formats are described in more detail in their respective documentation pages at http:
/Istixproject.github.io/releases/1.2/ for STIX and http://schemas.mandiant.com for OpenlOC v1.0 and v1.1 schemas.

IOC reports in Lastline IOC format are composed of two basic entities: Matches and Rules. A Match entity describes a
single object (such as a file on the file system) with specific properties (such as the name of the file). A Rule combines
multiple Match objects into complex expressions. Alternatively, a Rule can also combine one or more Rule objects.
While some Match types describe objects that are available in STIX or OpenlOC, others do not have a direct mapping
into the other IOC formats. The following table shows Lastline IOC Match types and their counterparts:

Lastline | OpenlOC STIX

Mutex Processltem/HandleList/Handle/Name MutexObj
Registry | Registryltem/KeyPath, Registryltem/Value | WinRegistryKey
File Fileltem/FullPath WinFile
Autostart | None None

3.14.1 Report Structure

The Lastline IOC report contains a tree (dictionary) formatted using JSON or XML. This tree contains 2 main sections,
containing a list of Match and Rule objects.

Matches

The Matches section contains a list of all basic entities that were extracted as Indicator of Compromise.
That is, the analysis system found the behavior to be indicative/interesting in terms of the system modifi-
cation.

Each entry is defined by a unique name attribute, as well as a type. Depending on the type, the entry has
other, type-specific arguments (args) describing the entry in more detail.

Mutex

118 Chapter 3. Analysis Results

http://stixproject.github.io/about/
http://openioc.org/
http://stixproject.github.io/releases/1.2/
http://stixproject.github.io/releases/1.2/
http://schemas.mandiant.com

Lastline Analyst APl Documentation, Release 2.0

e type attribute value: mutex_match
* args:
— mutexname: required string with global mutex name.
Registry
e type attribute value: reg_match
* args:

— reg_key: required string with registry key path. Example:
HKCU\Software\Microsoft\Windows.

— reg_value_name: optional string with value name (note that this is not the data stored in the
registry, but the name under which it is stored). Example: IsAutoLoadable.

File
e type attribute value: file_system_match
* args:
— filename: required string with full path to file. Example: C: \mysample.txt
— md5: optional string with md>5 of file
Autostart
* type attribute value: autostart
o args:
— class: one of logon, explorer, bho, services, codecs, hijack, appinitdll, office.
— filename: required string with full path to file. Example: C: \mysample.txt
— md>5: optional string with md5 of file
Rules

The Rules section contains a list of boolean expressions combining individual Match or Rule entries into
complex expressions. An expression contains one or more entries combined with boolean operators and
or or.

A report may contain a special Rule named root to indicate one Rule entry that combines all other entries
into one expression describing all objects described in this IOC report.

Examples
Examplel

This example shows two Match entries, and each entry refers to a file on the file system using different
parameters.

The objects are combined using the OR operator, meaning that the IOC should match if at least of the two
files exists with the given properties:

{

"matches": [
{
"name": "full_ 1",
"type": "file_system_match",
"args": {

"filename": "c:\\windows\\systemself.exe"

}

3.14. Report Format /l-ioc-json 119

Lastline Analyst APl Documentation, Release 2.0

} 14
{
"name": "files_1",
"type": "file_system_match",
"args": |
"md5": "6062fdc71440cb97db32c645627e181f",
"filename": "c:\\windows\\systemself.exe"
}
}
j| 14
"rules": [
{
"name": "root",
"match": "full_ 1 or files_1"
}
]
}
Example2

This example shows two Microsoft Windows Registry elements. The first is described by its key, the other
by its key and value name.

The objects are combined using the AND operator, meaning that the IOC should match if both registry
entries exist with the given properties:

{
"matches": [
{
"name": "full 1",
"type": "reg_match",
"args": {
"reg_key": "HKLM\\testl"
}
}I
{
"name": "full_2",
"type": "reg_match",
"args": |
"reg_value_name": "ObjectId",
"reg_key": "HKLM\\test2"
}
}I
JI
"rules": [
{
"name": "all_indicators",
"match": "full_1 and full_2"
}
]
}

3.15 Report Format /l-pcap

This analysis report format refers to the analysis of a network traffic capture (pcap). The capture contents are analyzed
to identify traffic that matches patterns of malicious connections (“signature detections”) and to identify connections

120 Chapter 3. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

involving hosts that are known to our threat intelligence (“blacklist detections”™).

In addition to the report fields shared by all report formats (see Analysis Report Format) the report contains a number
of different fields with details specific to the analysis.

Reports may include fields not described here: they are to be considered as experimental or deprecated and SHOULD
be ignored.

Report contents
* domain_detections. Type: List of detections on domains. See Domain detections for details.
A list providing information about detections that affected a domain.
* ip_detections. Type: List of detections on IP addresses. See /P address detections for details.
A list providing information about detections that affected an IP address.
 url_detections. Type: List of detections on URLs. See URL detections for details.

A list providing information about detections that affected a URL.

3.15.1 Detection information

Base information about a detection.
* detection_type Type: String.
Example: signature.

The type of detection. It can be either “signature”, indicating that the detection was caused by an IDS
detection on the network traffic, or “blacklist”, indicating that the domain is known to be involved in
malicious activity according to our threat intelligence.

* threat_class Type: String.
Example: drive-by.
The threat-class of this detection.
 threat_name 7ype: String.
Example: pseudo-darkleech redirection to exploit url.
The threat identified by this detection.
* threat_severity Type: Integer.
Example: 75.

Score between 0 and 100 indicating the severity of the detection.

3.15.2 Domain detections

A detection on a domain.
In addition to the generic detection information (see Defection information), it specifies:
e domain Type: String.
Example: example.com.

The domain involved in this detection.

3.15. Report Format /l-pcap 121

Lastline Analyst APl Documentation, Release 2.0

3.15.3 IP address detections

A detection on an IP address.
In addition to the generic detection information (see Defection information), it specifies:
e ip Type: String.
Example: 93.184.216.34.

The IP address involved in this detection.

3.15.4 URL detections

A detection on a URL.
In addition to the generic detection information (see Detection information), it specifies:
e url Type: String.
Example: http://example.com.

The URL involved in this detection.

3.16 Report Format //-flash

This analysis report format refers to a dynamic analysis run of a Flash file.

In addition to the report fields shared by all report formats (see Analysis Report Format) the report contains a number
of different fields with details specific to the analysis run.

Reports may include fields not described here: they are to be considered as experimental or deprecated and SHOULD
be ignored.

Report contents
e callgraph. Type: List of function call information; see Callgraph Format.
A list of ActionScript function calls that were observed during the analysis.
* exploits. Type: List of exploited vulnerabilities. See Exploits Format for details.
A list describing each vulnerability that was was found to be exploited during the analysis.
o generated_swfs. Type: List of generated Flash files. See Flash File Format for details.
A list describing any Flash file that was dynamically generated during the analysis.
* strings. Type: List of strings. See String Format for details.
A list containing the strings observed during the analysis.

* subject Type: Dictionary describing the analysis subject. See Flash File Format for details.

3.16.1 Caligraph Format

A callgraph representing relationships between functions. The callgraph is recorded dynamically.
e args. Type: List of function arguments. See Function Arguments and Return Value Format for details.

The list of arguments that were passed to the current function.

122 Chapter 3. Analysis Results

http://example.com

Lastline Analyst APl Documentation, Release 2.0

* callees. Type: List of callees for the current function. See Callgraph Format for details.
The list of function calls called from the current function.

e depth. Type: Integer.
Example: 1
The depth in the callgraph.

* name. Type: String.
Example: “re52142333723350123423632234/re52142319223205123423632234”
The name of the function.

e ret. Type: Return value or null. See Function Arguments and Return Value Format for details.
Example: null
The return value of the function.

¢ this. Type: String.
Example: “0xfd20e80”

The address of the “this” object, in hexadecimal format.

3.16.2 Function Arguments and Return Value Format

A value passed as argument to a function or returned from a function.
* typename. Type: String.
Example: “int”
The type of the argument or return value.
* value. Type: String.
Example: “0x8”

The argument/return value.

3.16.3 Exploits Format

A vulnerability that was exploited during the analysis.

e desc. Type: String.
Example: “Buffer overflow in Flash Player via Blender data”
The vulnerability being exploited.

* vendor Type: String.
Example: “Adobe”
The vendor whose software contains the vulnerability.

* vulnerability_id Type: String.
Example: “CVE-2014-0515”
The public vulnerability ID, such as its CVE number.

3.16. Report Format //-flash

123

Lastline Analyst APl Documentation, Release 2.0

¢ vulnerability_url Type: String.
Example: “https://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2014-0515"

A URL where more information about the vulnerability can be found.

3.16.4 Flash File Format

Information about a Flash file, either the original analysis subject or a Flash file that was dynamically generated during

the analysis.

* mdS. Type: hexadecimal string.
Example: 941£85f0ce9162a9b9531131b458¢267
MDS5 hash of the input file.

* shal. Type: hexadecimal string.
Example: c511db6ae526e9ff2df60b2dba43deal f8cdd591
SHAT1 hash of the input file.

* sha256. Type: hexadecimal string.

Example: a820bb75a2d6fb069af2afc762cabe30ab8c8b4d690ff880ed3a0a7b9bad36be

SHA256 hash of the input file.
e compression. Type: String.
Example: “zlib”
The compression type used by the input file.
* filename. Type: String.
Example: “941£85f0ce9162a9b9531131b458c267.swf”
The filename used during the submission.
e frame_count. Type: Integer.
Example: 1
The total number of frames in the Flash video.
* num_tags. Type: Integer.
Example: 12
The number of tags in the Flash file.
* size. Type: Integer.
Example: 29773
The number of bytes in the file.
* tags. Type: List of tags. See Tag Format for details.
The list of tags that compose the file.
* version. Type: Integer.
Example: 31
The Flash file version.

124 Chapter 3

. Analysis Results

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0515

Lastline Analyst APl Documentation, Release 2.0

3.16.5 Strings Format

A string found during the Flash file execution.
* value. Type: String.
Example: “11,1,102,62”

The string value.

3.16.6 Tag Format

A tag in the Flash file. See the Flash file format specification for details.

* name. Type: String.
Example: “FileAttributes”
The name of the tag.
* tagtype. Type: int.
Example: 69
The tag ID.
Additional fields will be available, depending on the specific tag type.

3.17 Report Format /I-doc

This analysis report format refers to a static analysis run of a Microsoft Office document, Flash file or archive.

In addition to the report fields shared by all report formats (see Analysis Report Format) the report contains a number

of different fields with details specific to the analysis run.

Reports may include fields not described here: they are to be considered as experimental or deprecated and SHOULD

be ignored.
Report contents

« analysis_subject: (optional). Type: Dictionary.

document_name. Type: String.

Name of the document that was analyzed.

file_size. Type: Integer.

Size of the document (bytes).

mdS. Type: String.

md5 hash of the document.

shal. Type: String.

shal hash of the document.

 analysis_metadata: (optional). Type: List of analysis metadata; see Document Metadata Format.

Document metadata extracted during analysis.

3.17. Report Format //-doc

125

http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf

Lastline Analyst APl Documentation, Release 2.0

e anomalies: (optional). Type: List of dictionaries.
Anomalies detected in document script code.
— description. Type: String.
Example: “Evasion: VBA source code may have been altered”
Description of the detected anomaly.

— location. Type: String.

Example: “1£8td8b6060284d5c47e26ec1021dd834af9b4655d289/Macros/VBA/NewMacros”

Location of the anomaly within the document.
* macros: (optional). Type: List of dictionaries.
Macros embedded in the document.
— macro. Type: String.
Macro code.
— full_stream_path. Type: String.
Location of the macro within the document.
 streams: (optional). Type: List of dictionaries.
Streams embedded in the document.
— full_stream_path: Type: String.
Location of the stream within the document.
— child_streams: Type: List of strings.
Locations of children of the stream within the document.
— md5: (optional). Type: Hexadecimal string.
A md5 hash of a file content.
— shal: (optional). Type: Hexadecimal string.
A shal hash of a file content.
— sha256: (optional). Type: String.
sha256 hash of the analysis subject.
— file_info: (optional). Type: String.
Example: “MS Windows shortcut”.
A text description of stream type.
— file_size: (optional). Type: Integer.
A stream size in bytes.
— mime: (optional). Type: String.
MIME type of stream.
— clsid: (optional). Type: String.
Globally unique identifier for embedded (OLE) stream object.

126 Chapter 3

. Analysis Results

Lastline Analyst APl Documentation, Release 2.0

3.17.1 Document Metadata Format
During the analysis run, the analysis engine extracts document metadata. This type extends the Analysis Metadata
Format type.
Metadata contents
* name: (optional). Type: String.
Name given to the metadata.
« filename: (optional). Type: String.
Example: “desktop.ini”.
A file name. Could be absolute or relative path. Applies to metadata_type “extracted_file”.
« abs_path: (optional). Type: String.
Example: “C:\Users\desktop.ini”.

An absolute path the file. Applies to metadata_type “extracted_file”.

3.18 Report Descriptions

The type of analysis performed for artifacts submitted to the Analyst API depends on the type of the artifact (file or
URL) as well as on the configuration of the Analyst API.

Each submission of a supported type is processed by one or more analysis engines. For example, a JavaScript file can
be

* monitored by loading it in an instrumented browser,
* statically analyzed for anomalies in the script code, and
* run directly on the operating system via a script interpreter.

Each analysis engine performs its analysis, resulting in an analysis report each having a unique report-UUID, a rele-
vance to the overall task classification, as well as a description.

The analysis report description provides details on what type of analysis was performed. Additionally it may contain
optional information describing where the analysis was performed. In most cases this is the system to which the
artifact was submitted - such as the Lastline hosted datacenter. For On-Premises customers that have the cloud-
analysis component enabled, the report description may indicate that the same artifact was executed on the Lastline
cloud and a relevant analysis report may be downloaded from the global Lastline analysis system. If this type of report
is available and requested, the Analyst API transparently downloads the report from the Lastline backend and serves
it like any other, locally-generated analysis report.

Note: If a report is available for download from the global Lastline (hosted) analysis system, it does not imply that
the artifact (file or URL) was uploaded from the local On-Premises installation. Instead, it means that the artifact
was already known to the global analysis system and a relevant analysis report was included as additional source
of information for classification of the local analysis. For details, refer to the documentation of the cloud-analysis
component in the Lastline manuals.

3.18. Report Descriptions 127

https://user.lastline.com/manuals

Lastline Analyst APl Documentation, Release 2.0

128 Chapter 3. Analysis Results

CHAPTER
FOUR

CHILD TASKS

When analyzing a submitted artifact, the system may generate related sub- or child tasks as part of the analysis.
Examples for such child tasks are files extracted from an archive, embedded programs extracted from a document, files
found during the analysis of a URL, network traffic generated during the analysis or customized run of a document
analysis.

While these child tasks are standalone analysis runs, the analysis outcome/classification of the child task may also
influence the classification of the originally submitted artifact. For example, if a file is extracted from an archive and
this file is found to be malicious, the archive is also considered to be malicious.

The analysis results of these child tasks are linked to the original analysis and accessible as part of the child_task field
of the analysis result.

Child task contents
* task_uuid. Type: Hexadecimal string.
Example: 7065a3ba0c729ad5981a1e1072df710d.
Unique identifier for this analysis submission.
* score. Type: Integer.
Example: 75.

Score between 0 and 100 indicating maliciousness of the observed behavior (O=benign, 100=malicious).
See Contents of response for details.

* tag. Type: String.
Example: “file extracted from archive”.
A short description of the child task’s type.
 parent_report_uuid: (optional). Type: String.
Example: c6600954ea584d0a8912e4be80609122

If the child task is linked to a specific analysis report, such as the analysis inside the Windows 7 sandbox,
of the (original/parent) task, the parent_report_uuid points to the corresponding report.

129

Lastline Analyst APl Documentation, Release 2.0

130 Chapter 4. Child Tasks

CHAPTER
FIVE

SAMPLE API CLIENTS

To make using the Lastline Analyst API easier, we provide client code in Python. Specifically, we provide the follow-
ing:

* Analyst API client: an API client providing detailed documentation for each function available in the API, and
serving as basis for using the Lastline Analyst API in Python.

* Analysis Client Shell: an easy way to explore the Lastline Analyst API from an interactive Python shell.

 analyze_artifacts: two simple command-line programs that use the API client to analyze URLs and files found
(recursively) in a directory. This is also available as a stand-alone windows executable.

» Application Bundle Module: Python utility code for building application bundles, which allow detailed cus-
tomization of the analysis.

5.1 Analyst API client

This is a Python client for the Lastline Analyst API.

The AnalysisClient class implements the client side of the Lastline Analyst API methods. It can be imported
into Python client code that uses the API.

The client is available at https://analysis.lastline.com/docs/llapi_client/analysis_apiclient.py .

5.1.1 Requirements

The Analysis API client requires:
 Python 2.7.
* The python requests module (tested with version 2.2.1).
* The python simplejson module (tested with version 3.6.5).
* To use the client as a python shell, the ipython module (tested with version 2.4.1).

Required python modules can be installed using tools such as apt, pip, or easy_install, e.g.:

apt-get install python-pycurl=7.19.0-4ubuntu3
pip install ipython==2.4.1
easy_install requests==2.2.1

131

https://analysis.lastline.com/docs/llapi_client/analysis_apiclient.py

Lastline Analyst APl Documentation, Release 2.0

Note: You may want to consider installing the API client and its dependencies inside an isolated environment, such
as a container, schroot, or VirtualEnv. This allows experimenting with the Lastline APIs without affecting system
libraries/modules.

5.1.2 Changelog

The changelog only reflects backwards-incompatible changes; new functionality may not be reflected in all cases

¢ 2016-10-05: Stop download of full report details during submission Submission functions, such
as submit_file(), submit_file_hash(), or submit_url(), now default to
full_report_score=ANALYSIS_API_NO_REPORT_DETAILS (constant for -1), which dis-
ables automatic download of the full, detailed analysis report if a cached result is immediately available.
To access the full analysis report, use get_result () with the task_uuid returned as part of the
submission result.

* 2016-10-28: Move API client shell to dedicated script. The API client shell is now available via analy-
sis_apiclient_shell.py, which povides easier access to helper modules provided by the API client module.

5.1.3 Analysis Client Shell

In addition to the client, an API shell allows running the client from the command line. This provides an interactive
shell for manually sending requests to the Lastline Analyst API, and it can be used to experiment with the API for
analyzing files or URLs. For details, refer to the API Client Shell documentation.

5.1.4 Analyst API Client Classes

class llapi_client.analysis_apiclient.AnalysisClientBase (base_url, use_cdn=None,
logger=None, con-

fig=None)
A client for the Lastline analysis AP

This is an abstract base class: concrete subclasses just need to implement the _api_request method to actually
send the API request to the server.

Parameters
* base_url — URL where the lastline analysis API is located. (required)

* logger — if provided, should be a python logging.Logger object or object with similar
interface.

submit_file (file_stream, download_ip=None, download_port=None, download_url=None,
download_host=None, download_path=None, download_agent=None, down-
load_referer=None, download_request=None, full_report_score=-1, by-
pass_cache=None, delete_after_analysis=None, backend=None, analy-
sis_timeout=None, analysis_env=None, allow_network_traffic=None, filename=None,
keep_file_dumps=None, keep_memory_dumps=None, keep_behavior_log=None,
push_to_portal_account=None, raw=False, verify=True, server_ip=None,
server_port=None, server_host=None, client_ip=None, client_port=None,
is_download=True, protocol="http’, apk_package_name=None, password=None,
password_candidates=None, report_version=None, analysis_task_uuid=None, anal-
ysis_engine=None, task_metadata=None, priority=None, bypass_prefilter=None,
fast_analysis=None)

132 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

Submit a file by uploading it.

For return values and error codes please see malscape _service.api.views.analysis.
submit_file().

Parameters

file_stream — file-like object containing the file to upload.
download_ip — DEPRECATED! Use server_ip instead.
download_port — DEPRECATED! Use server_port instead.

download_url — DEPRECATED! replaced by the download_host and download_path
parameters

download_host — hostname of the server-side endpoint of the connection, as a string
of bytes (not unicode).

download_path — host path from which the submitted file was originally downloaded,
as a string of bytes (not unicode)

download_agent — HTTP user-agent header that was used when the submitted file was
originally downloaded, as a string of bytes (not unicode)

download referer — HTTP referer header that was used when the submitted file was
originally downloaded, as a string of bytes (not unicode)

download_request — full HTTP request with which the submitted file was originally
downloaded, as a string of bytes (not unicode)

full_report_score - if set, this value (between -1 and 101) determines starting at
which scores a full report is returned. -1 and 101 indicate “never return full report”; O
indicates “return full report at all times”

bypass_cache - if True, the API will not serve a cached result. NOTE: This requires
special privileges.

delete_after_ analysis - if True, the backend will delete the file after analysis is
done (and noone previously submitted this file with this flag set)

analysis_timeout - timeout in seconds after which to terminate analysis. The anal-
ysis engine might decide to extend this timeout if necessary. If all analysis subjects termi-
nate before this timeout analysis might be shorter

analysis_env — environment in which to run analysis. This includes the operating
system as well as version of tools such as Microsoft Office. Example usage: - win-
dows7:0ffice2003, or - windowsxp By default, analysis will run on all available operating
systems using the most applicable tools.

allow_ network_ traffic — if False, all network connections will be redirected to a
honeypot. Requires special permissions.

filename - filename to use during analysis. If none is passed, the analysis engine
will pick an appropriate name automatically. An easy way to pass this value is to use
‘file_stream.name’ for most file-like objects

keep_file_dumps - if True, all files generated during analysis will be kept for post-
processing. NOTE: This can generate large volumes of data and is not recommended.
Requires special permissions

keep_memory_dumps - if True, all buffers allocated during analysis will be kept for
post-processing. NOTE: This can generate large volumes of data and is not recommended.
Requires special permissions

5.1. Analyst API client

133

Lastline Analyst APl Documentation, Release 2.0

* keep_behavior_log —if True, the raw behavior log extracted during analysis will be
kept for post-processing. NOTE: This can generate very very large volumes of data and is
not recommended. Requires special permissions

e push_to_portal_account - if set, a successful submission will be pushed to the
web-portal using the specified username

* backend - DEPRECATED! Don’t use
» verify - if False, disable SSL-certificate verification
* raw — if True, return the raw JSON results of the API query

* server_ip — ASCII dotted-quad representation of the IP address of the server-side end-
point.

* server_port —integer representation of the port number of the server-side endpoint of
the flow tuple.

e server host — DEPRECATED! Don’t use

* client_ip — ASCII dotted-quad representation of the IP address of the client-side end-
point.

* client_ port - integer representation of the port number of the client-side endpoint of
the flow tuple.

* is_download - Boolean; True if the transfer happened in the server -> client direction,
False otherwise (client -> server).

» protocol — app-layer protocol in which the file got transferred. Short ASCII string.
* report_version — Version name of the Report that will be returned (optional);
* apk_package_name — package name for APK files. Don’t specify manually.

» password — password used to analyze password-protected or encrypted content (such as
archives or documents)

* password_candidates — List of passwords used to analyze password-protected or
encrypted content (such as archives or documents)

* analysis_task_uuid - if the call is used to create a child task, it specifies the current
analysis task UUID; None otherwise. Lastline-internal/do not use.

* analysis_engine —if analysis_task_uuid is provided, it specifies the sandbox it refers
to; None otherwise. Lastline-internal/do not use.

* task_metadata — optional task-metadata to upload. Requires special permissions;
Lastline-internal/do not use

e priority — Priority level to set for this analysis. Priority should be between 1 and 10 (1
is the lowest priority, 10 is the highest) Setting priority to any value other than 1 requires
special permissions.

* bypass_prefilter —Boolean; If True, file is submitted to all supported analysis com-
ponents without prior static analysis. Requires special permissions.

* fast_analysis — Boolean; If True, file is submitted only to fast analyzers (static)
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.

134 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release

2.0

submit_file_hash (md5=None, shal=None, sha256=None, download_ip=None, down-

load_port=None, download_url=None, download_host=None, down-
load_path=None, download_agent=None, download_referer=None,
download_request=None, full_report_score=-1, bypass_cache=None,
password=None, password_candidates=None, backend=None, re-
quire_file_analysis=True, mime_type=None, analysis_timeout=None,
analysis_env=None, allow_network_traffic=None, file-
name=None, keep_file_dumps=None, keep_memory_dumps=None,
keep_behavior_log=None, push_to_portal_account=None, raw=Fualse,
verify=True, server_ip=None, server_port=None, server_host=None,
client_ip=None, client_port=None, is_download=True, protocol="http’,
apk_package_name=None, report_version=None, analysis_task_uuid=None,
analysis_engine=None, task_metadata=None, priority=None, by-
pass_prefilter=None, fast_analysis=None)

Submit a file by hash.

One of the md5, shal, or sha256 parameters must be provided. If both are provided, they should be

consistent.

For return values and error codes please see malscape service.api.views.analysis.
submit_file().

Parameters

e md5 — md>5 hash of file.

shal - shal hash of file.

sha256 — sha256 hash of file.

download_ip — DEPRECATED! Use server_ip instead.
download_port — DEPRECATED! Use server_port instead.

download_url — DEPRECATED! replaced by the download_host and download_path
parameters

download_host — hostname of the server-side endpoint of the connection, as a string
of bytes (not unicode).

download path — host path from which the submitted file was originally downloaded,
as a string of bytes (not unicode)

download_agent — HTTP user-agent header that was used when the submitted file was
originally downloaded, as a string of bytes (not unicode)

download referer — HTTP referer header that was used when the submitted file was
originally downloaded, as a string of bytes (not unicode)

download_request — full HTTP request with which the submitted file was originally
downloaded, as a string of bytes (not unicode)

full_ report_score — if set, this value (between -1 and 101) determines starting at
which scores a full report is returned. -1 and 101 indicate “never return full report”; O
indicates “return full report at all times”

bypass_cache - if True, the API will not serve a cached result. NOTE: This requires
special privileges.

password — password used to analyze password-protected or encrypted content (such as
archives or documents)

5.1. Analyst API client

135

Lastline Analyst APl Documentation, Release 2.0

* password_candidates — List of passwords used to analyze password-protected or
encrypted content (such as archives or documents)

* require_file analysis - if True, the submission requires an analysis run to be
started. If False, the API will attempt to base a decision solely on static information such
as download source reputation and hash lookups. Requires special permissions; Lastline-
internal/do not use

* mime_ type - the mime-type of the file; This value should be set when re-
quire_file_analysis is True to enforce getting the most information available

* analysis_timeout - timeout in seconds after which to terminate analysis. The anal-
ysis engine might decide to extend this timeout if necessary. If all analysis subjects termi-
nate before this timeout analysis might be shorter

* analysis_env — environment in which to run analysis. This includes the operating
system as well as version of tools such as Microsoft Office. Example usage: - win-
dows7:0ffice2003, or - windowsxp By default, analysis will run on all available operating
systems using the most applicable tools.

e allow_network_ traffic - if False, all network connections will be redirected to a
honeypot. Requires special permissions.

e filename - filename to use during analysis. If none is passed, the analysis engine
will pick an appropriate name automatically. An easy way to pass this value is to use
‘file_stream.name’ for most file-like objects

* keep_file_dumps - if True, all files generated during analysis will be kept for post-
processing. NOTE: This can generate large volumes of data and is not recommended.
Requires special permissions

* keep_memory_dumps — if True, all buffers allocated during analysis will be kept for
post-processing. NOTE: This can generate very large volumes of data and is not recom-
mended. Requires special permissions

* keep_behavior_log - if True, the raw behavior log extracted during analysis will be
kept for post-processing. NOTE: This can generate very very large volumes of data and is
not recommended. Requires special permissions

* push_to_portal_account - if set, a successful submission will be pushed to the
web-portal using the specified account

* backend - DEPRECATED! Don’t use
» verify — if False, disable SSL-certificate verification
e raw —if True, return the raw json results of the API query

* server_ip — ASCII dotted-quad representation of the IP address of the server-side end-
point.

* server_port —integer representation of the port number of the server-side endpoint of
the flow tuple.

e server_ host —- DEPRECATED! Don’t use

* client_ip — ASCII dotted-quad representation of the IP address of the client-side end-
point.

* client_port —integer representation of the port number of the client-side endpoint of
the flow tuple.

136 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

is_download — Boolean; True if the transfer happened in the server -> client direction,
False otherwise (client -> server).

protocol — app-layer protocol in which the file got transferred. Short ASCII string.
apk_package_name — package name for APK files. Don’t specify manually.
report_version — Version name of the Report that will be returned (optional);

analysis_task_uuid-if the call is used to create a child task, it specifies the current
analysis task UUID; None otherwise. Lastline-internal/do not use.

analysis_engine - if analysis_task_uuid is provided, it specifies the sandbox it refers
to; None otherwise. Lastline-internal/do not use.

task_metadata — optional task-metadata to upload. Requires special permissions;
Lastline-internal/do not use

priority — Priority level to set for this analysis. Priority should be between 1 and 10 (1
is the lowest priority, 10 is the highest). Setting priority to any value other than 1 requires
special permissions.

bypass_prefilter —Boolean; If True, file is submitted to all supported analysis com-
ponents without prior static analysis. Requires special permissions.

fast_analysis — Boolean; If True, file is submitted only to fast analyzers (static)

Raises

AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

CommunicationError — Error contacting Lastline Analyst APIL.

submit_url (url, referer=None, full_report_score=-1, bypass_cache=None, backend=None,

analysis_timeout=None, push_to_portal_account=None, raw=False, verify=True,
user_agent=None, report_version=None, analysis_task_uuid=None, analy-
sis_engine=None, priority=None, task_metadata=None, fast_analysis=None, pass-
word_candidates=None)

Submit a url.

For return values and error codes please see malscape service.api.views.analysis.
submit_url ().

Parameters

url — url to analyze
referer — referer header to use for analysis

full_report_score - if set, this value (between -1 and 101) determines starting at
which scores a full report is returned. -1 and 101 indicate “never return full report”; O
indicates “return full report at all times”

bypass_cache - if True, the API will not serve a cached result. NOTE: This requires
special privileges.

analysis_timeout - timeout in seconds after which to terminate analysis. The anal-
ysis engine might decide to extend this timeout if necessary. If all analysis subjects termi-
nate before this timeout analysis might be shorter

push_to_portal_account - if set, a successful submission will be pushed to the
web-portal using the specified account

backend - DEPRECATED! Don’t use

5.1. Analyst API client

137

Lastline Analyst APl Documentation, Release 2.0

» verify — if False, disable SSL-certificate verification

e raw —if True, return the raw JSON results of the API query

* report_version — Version name of the Report that will be returned (optional);
* user_agent — user agent header to use for analysis

* analysis_task_uuid - if the call is used to create a child task, it specifies the current
analysis task UUID; None otherwise. Lastline-internal/do not use.

* analysis_engine —if analysis_task_uuid is provided, it specifies the sandbox it refers
to; None otherwise. Lastline-internal/do not use.

* priority — Priority level to set for this analysis. Priority should be between 1 and 10 (1
is the lowest priority, 10 is the highest). Setting priority to any value other than 1 requires
special permissions.

* task_metadata - optional task-metadata to upload. Requires special permissions;
Lastline-internal/do not use

e fast_analysis — Boolean; If True, url is submitted only to fast analyzers (static)

* password_candidates — List of passwords used to analyze password-protected or
encrypted content from the URL.

Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst API.

get_result (uuid, report_uuid=None, full_report_score=None, include_scoring_components=None,
raw=False, requested_format="json’, verify=True, report_version=None, al-

low_datacenter_redirect=None)
Get results for a previously submitted analysis task.

For return values and error codes please see malscape service.api.views.analysis.
get_results ().

Parameters

* uuid - the unique identifier of the submitted task, as returned in the task_uuid field of
submit methods.

* report_uuid - if set, include this report in the result.

e full_report_score - if set, this value (between -1 and 101) determines starting at
which scores a full report is returned. -1 and 101 indicate “never return full report™; O
indicates “return full report at all times”

* include_scoring_components — if True, the result will contain details of all com-
ponents contributing to the overall score. Requires special permissions

* raw — if True, return the raw JSON/XML results of the API query.

* requested_format — JSON, XML, PDF, or RTF. If format is not JSON, this implies
raw.

* report_version — Version of the report to be returned If report_uuid is not specified,
this parameter is ignored. (optional)

* allow_datacenter_redirect — If False, redirection to other datacenters pre-
vented.

138 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst API.

get_result_summary (uuid, raw=False, requested_format="json’, score_only=False, verify=True,

allow_datacenter_redirect=None)
Get result summary for a previously submitted analysis task.

For return values and error codes please see malscape_ service.api.views.analysis.
get_result ().

Parameters

* uyuid - the unique identifier of the submitted task, as returned in the task_uuid field of
submit methods.

e raw — if True, return the raw JSON/XML results of the API query.
* requested_format — JSON or XML. If format is not JSON, this implies raw.

* score_only - if True, return even less data (only score and threat/threat-class classifi-
cation).

* allow_datacenter_redirect — If False, redirection to other datacenters pre-
vented.

Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.

get_result_artifact (uuid, report_uuid, artifact_name, password_protected=None, raw=False,

verify=True, allow_datacenter_redirect=None)
Get artifact generated by an analysis result for a previously submitted analysis task.

NOTE: Consider using get_report_artifact() if the artifact is bound to a specific analysis report (which it
is in practically all cases.

Parameters

* uuid - the unique identifier of the submitted task, as returned in the task_uuid field of
submit methods.

* report_uuid - the unique report identifier returned as part of the dictionary returned
by get_result().

* artifact_name - the name of the artifact as mentioned in the given report in the dic-
tionary returned by get_result().

* password_protected (str) — If provided, use this password to create a zip which
will contain the artifact being fetched. The password provided should be using only ASCII
characters and have max length of 128 characters

* raw — if True, return the raw JSON/XML results of the API query.

* allow_datacenter_redirect — If False, redirection to other datacenters pre-
vented.

Raises

5.1.

Analyst API client 139

Lastline Analyst APl Documentation, Release 2.0

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.

get_report_artifact (uuid, report_uuid, artifact_name, password_protected=None, verify=True,

) allow_datacenter_redirect=None)))
Get artifact generated by an analysis result for a previously submitted analysis task.

Parameters

* uuid (str) - the unique identifier of the submitted task, as returned in the task_uuid field
of submit methods.

* report_uuid (str) — the unique report identifier returned as part of the dictionary
returned by get_result().

* artifact_name (str) — the name of the artifact as mentioned in the given report in
the dictionary returned by get_result().

* password_protected (str) — If provided, use this password to create a zip which
will contain the artifact being fetched. The password provided should be using only ASCII
characters and have max length of 128 characters

* allow_datacenter_redirect — If False, redirection to other datacenters pre-
vented.

Returns A stream containing the artifact content
Return type stream
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst APIL

get_completed (gfter, before=None, raw=False, verify=True, include_score=False)
Get the list of uuids of tasks that were completed within a given time frame.

The main use-case for this method is to periodically request a list of uuids completed since the last time
this method was invoked, and then fetch each result with get_result().

Date parameters to this method can be:
* date string: %Y-%m-%d’
* datetime string: ‘% Y-%m-%d %H:%M:%S’
* datetime.datetime object

All times are in UTC.

For return values and error codes please see malscape _service.api.views.analysis.
get_completed().

Parameters
* after — Request tasks completed after this time.
* before — Request tasks completed before this time.

* include_score - If True, the response contains scores together with the task-UUIDs
that have completed

* raw — if True, return the raw JSON results of the API query.

140 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst API.

get_completed_with_metadata (after, before=None, raw=False, verify=True)
Get the list of dictionaries, each containing a uuid for a task that was completed within a given time frame,
the resulting score, and additional task_metadata

The main use-case for this method is to periodically request a list of of dictionaries containing information
about each task, such as the score and task_metadata. Then, additional information can be retrieved for a
task with get_result()

Date parameters to this method can be:
* date string: %Y-%m-%d’
* datetime string: ‘% Y-%m-%d %H:%M:%S’
* datetime.datetime object

All times are in UTC.

For return values and error codes please see malscape_service.api.views.analysis.
get_completed with _metadata ().

Parameters

* after — Request tasks completed after this time.

* before — Request tasks completed before this time.

* raw — if True, return the raw JSON results of the API query.
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.

get_progress (uuid, raw=False, allow_datacenter_redirect=None)
Get a progress estimate for a previously submitted analysis task.

For return values and error codes please see malscape_ service.api.views.analysis.
get_results ().

Parameters

* uyuid - the unique identifier of the submitted task, as returned in the task_uuid field of
submit methods.

* raw — if True, return the raw JSON/XML results of the API query.
* requested_format — JSON or XML. If format is not JSON, this implies raw.

* allow_datacenter_redirect - If False, redirection to other datacenters pre-
vented.

Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst API.

5.1.

Analyst API client 141

Lastline Analyst APl Documentation, Release 2.0

is_risky_ analysis_artifact (report_uuid, artifact_name, task_uuid=None, raw=False, ver-
ify=True, allow_datacenter_redirect=None)
Check if the artifact can potentially be malicious using the artifact information.

Parameters
* report_uuid (str) - Identifier of the requested report to which the artifact is assigned
e artifact_name (str)— Identifier of task artifact

* task _uuid (str/None) — Unique identifier for the task that analyzed the artifact. If
not present, will only look for artifact in local datacenter.

* raw (boo1l) —if True, return the raw JSON results of the API query.
* verify (bool) —if True, verify ssl, otherwise False

* allow_datacenter_redirect (bool |None) — If False, redirection to other data-
centers prevented.

Returns True if the artifact is risky, False otherwise
Return type bool
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.
* InvalidArtifactError — Invalid artifact uuid.

class llapi_client.analysis_apiclient.AnalysisClient (base_url, key, api_token, log-
ger=None, ca_bundle=None,
verify_ssl=True,
use_curl=False, timeout=60,
use_cdn=None, proxies=None,

config=None)
Client for the Analysis API.

A client for the Analysis API that accesses the API through the web, using key and api token for authentication,
and the python requests module for sending requests.

NOTE: This class is not thread safe

class llapi_client.analysis_apiclient.SubmissionHelper (analysis_client,
logger=None,

num_retries=10)
Helper class for handling submission and task retrieval

submit_file_stream (file_stream, **kwargs)
Submit a file for analysis and retrieve results if they are immediately available. Additional parameters
passed to this function are forwarded to the client (see submit_file_hash or submit_file).

NOTE: To avoid a race-condition between submission and polling for results, use the following approach:

helper = SubmissionHelper (<client>)

ts = helper.get_api_utc_timestamp ()

submission = helper.submit_file_stream(<stream>)
helper.wait_for_completion_of_submission (submission, ts)

or use the submit_file_streams_and_wait_for_completion() helper function.

142 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

NOTE: You may provide any of the parameters - file_md5, - file_shal, or - file_sha256 to avoid repeated
file-hash calculations. Any hash not provided will be generated from the given file-stream.

Parameters file_stream (stream) — Stream to submit
Returns Submission results

Return type SubmittedFileTask

Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.

submit_filename (filename, **kwargs)
Submit a file for analysis and retrieve results if they are immediately available. Additional parameters
passed to this function are forwarded to the client (see submit_file_hash or submit_file).

NOTE: To avoid a race-condition between submission and polling for results, use the following approach:

helper = SubmissionHelper (<client>)

ts = helper.get_api_utc_timestamp ()

submission = helper.submit_filename (<filename>)
helper.wait_for_completion_of_submission (submission, ts)

or use the submit_filenames_and_wait_for_completion() helper function.
Parameters £ilename (str) — File on the local filesystem to submit
Returns Submission results
Return type SubmittedFileTask
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst API.

submit_url (url, **kwargs)
Submit a URL for analysis and retrieve results if they are immediately available. Additional parameters
passed to this function are forwarded to the client (see submit_url).

NOTE: To avoid a race-condition between submission and polling for results, use the following approach:

helper = SubmissionHelper (<client>)
ts = helper.get_api_utc_timestamp ()
submission = helper.submit_url (<url>, referer=<referer>)
helper.wait_for_completion_of_submission (submission, ts)

or use the submit_urls_and_wait_for_completion() helper function.
Parameters url (str) — URL to submit
Returns Submission results
Return type SubmittedURLTask
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

5.1. Analyst API client 143

Lastline Analyst APl Documentation, Release 2.0

* CommunicationError — Error contacting Lastline Analyst API.

wait_for_completion_of_submission (submission, start_timestamp,
wait_completion_interval_seconds=15,
wait_completion_max_seconds=None, verify=True)
Wait for completion of a given tasks.

Parameters

* submission (SubmittedTask) — A submitted task. This object is updated in place with
result data

* start_timestamp (datetime.datetime) — UTC timestamp before the first submis-
sion has happened. Use self.get_api_utc_timestamp() to retrieve or use the submis-
sion_timestamp returned from the submission.

* wait_completion_interval_ seconds (float) — How long to wait between polls
for completion

* wait_completion_max_seconds (floar) — Don’t wait for longer than this many
seconds for completion. If None is specified, wait forever

» verify (bool) — if False, disable SSL-certificate verification
Raises
* WaitResultTimeout — Waiting for results timed out

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.

submit_file_streams_and_wait_for completion (file_streams,
wait_completion_interval_seconds=15,
wait_completion_max_seconds=None,
**kwargs)
Submit a list of files and wait for completion: For each file, submit the file for analysis, wait for comple-
tion, and retrieve results. Additional parameters passed to this function are forwarded to the client (see
submit_file_hash or submit_file).

Parameters
e file_streams (list‘(‘stream)) — List of streams to submit

* wait_completion_interval_seconds (float) — How long to wait between polls
for completion

* wait_completion_max_ seconds (float) — Don’t wait for longer than this many
seconds for completion. If None is specified, wait forever. NOTE: If waiting times out,
the result will contain elements whose score is set to None. This method does not raise
WaitResultTimeout to allow retrieving the result even when waiting for completion timed
out.

Returns Dictionary of results
Return type dict‘(‘SubmittedFileTask)
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

* CommunicationError — Error contacting Lastline Analyst API.

144 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

submit_filenames_and_wait_for_ completion (filenames, wait_completion_interval_seconds=15,
wait_completion_max_seconds=None,

**kwargs)
Submit a list of files and wait for completion: For each file, submit the file for analysis, wait for comple-

tion, and retrieve results. Additional parameters passed to this function are forwarded to the client (see
submit_file_hash or submit_file).

Parameters
» filenames (list‘(‘str)) — List of files on the local filesystem to submit

* wait_completion_interval_seconds (float) — How long to wait between polls
for completion

* wait_completion_max_seconds (floar) — Don’t wait for longer than this many
seconds for completion. If None is specified, wait forever. NOTE: If waiting times out,
the result will contain elements whose score is set to None. This method does not raise
WaitResultTimeout to allow retrieving the result even when waiting for completion timed
out.

Returns Dictionary of results
Return type dict‘(‘SubmittedFileTask)
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst APL

submit_urls_and wait_for completion (urls, wait_completion_interval_seconds=15,

wait_completion_max_seconds=None, **kwargs)
Submit a list of URLs and wait for completion: For each URL, submit the URL for analysis, wait for

completion, and retrieve results. Additional parameters passed to this function are forwarded to the client
(see submit_url).

Parameters
e urls (list‘(‘str)) — List of URLSs to submit

* wait_completion_interval_seconds (float) — How long to wait between polls
for completion

* wait_completion_max_seconds (floar) — Don’t wait for longer than this many
seconds for completion. If None is specified, wait forever

Returns Dictionary of results
Return type dict‘(‘SubmittedURLTask)
Raises

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst API.

wait_for_completion (submissions, start_timestamp, wait_completion_interval_seconds=15,

wait_completion_max_seconds=None, verify=True)
Wait for completion of a given dictionary of tasks.

NOTE: Results are filled in in provided submissions dictionary.

Parameters

5.1.

Analyst API client 145

Lastline Analyst APl Documentation, Release 2.0

* submissions (dict(id: ‘SubmittedTask)) — Dictionary of submissions: submission iden-
tifier to SubmittedTask mapping. NOTE: The submission identifier can be an arbitrary
value unique to the dictionary

e start_timestamp (datetime.datetime) — UTC timestamp before the first submis-
sion has happened. Use self.get_api_utc_timestamp() to retrieve or use the submis-
sion_timestamp returned from the submission.

* wait_completion_interval_seconds (float) — How long to wait between polls
for completion

* wait_completion_max_seconds (floar) — Don’t wait for longer than this many
seconds for completion. If None is specified, wait forever

» verify (bool) — if False, disable SSL-certificate verification
Raises
* WaitResultTimeout — Waiting for results timed out

* AnalysisAPIError — Analysis API returns HTTP error or error code (and ‘raw’ not
set)

e CommunicationError — Error contacting Lastline Analyst APL

5.1.5 Exceptions

class llapi_client.analysis_apiclient.AnalysisAPIError (msg, error_code)
Analysis API returned an error.
The error_code member of this exception is the error code returned by the API.

class llapi_client.analysis_apiclient.CommunicationError (msg=None, er-

ror=None)
Contacting Malscape failed.

class llapi_client.analysis_apiclient.WaitResultTimeout (msg="Waiting for results

») timed out’)
Waiting for results timed out.

5.1.6 Specifying custom command line arguments

This part of the documentation has been moved to a dedicated section, see Application Bundle Module.

5.1.7 Replaying traffic of pcaps for web analyses

This part of the documentation has been moved to a dedicated section, see Application Bundle Module.

5.2 Analysis Client Shell

The Analysis Client Shell allows running the client from the command line. This provides an interactive shell for
manually sending requests to the Lastline Analyst API, and it can be used to experiment with the API for analyzing
files or URLs.

This client shell is available for download at analysis_apiclient_shell.py.

To start the shell, place the file in the same directory as the Analyst API client and invoke:

146 Chapter 5. Sample API Clients

https://analysis.lastline.com/analysis/api-docs/llapi_client/analysis_apiclient.py

Lastline Analyst APl Documentation, Release 2.0

python analysis_apiclient_shell.py <API_KEY> <API_TOKEN>

replacing <API_KEY> and <API_TOKEN> with your API credentials. Once the shell is started, the current
context contains an analysis object. This is an instance of Ilapi client.analysis_apiclient.
AnalysisClient, which can be used to access the functionality of the Lastline Analyst API.

By default, the client connects to an API instance running in the hosted Lastline datacenters at https://analysis.lastline.
com . To connect to a different instance, for example when using a Lastline On-Premises installation, please use the
——api-url parameter to point to the URL of the On-Premises API. For example, to connect to a Lastline Analyst
On-Premises running at analyst.lastline.local, use:

python analysis_apiclient_shell.py —--api-url https://analyst.lastline.local/ <API_KEY>
<. <API_TOKEN>

5.3 Analyst API Shell Example

This is an example of how the Analyst API shell can be used to analyze resources with the Lastline Analyst API:

$ python analysis_apiclient_shell.py XXXXXXXXXXXXXXXXXXXX YyYYVVYVVVVYVVVVVVYVVVYVVVY

Here, XXX and yyy need to be replaced with your API key and token respectively.

[Python features make the API shell easy to discover. For instance, you can use tab-autocompletion to list the methods
of an object:

In [1]: analysis.
analysis.DATETIME_FMT analysis.get_completed analysis.
—submit_exe_file
analysis.DATE_FMT analysis.get_completed_with_metadata analysis.
—submit_exe_hash
analysis.ERRORS analysis.get_progress analysis.
—submit_file
analysis.FORMATS analysis.get_result analysis.
—submit_file_hash
analysis.SUB_APIS analysis.get_result_artifact analysis.
—submit_file _metadata
analysis.analyze_sandbox_result analysis.get_result_summary analysis.
—submit_url
analysis.completed analysis.rescore_task analysis.set_
—key

And you can use the question-mark character after an object or method to get documentation for it:

In [2]: analysis.submit_file?

5.3. Analyst API Shell Example 147

https://analysis.lastline.com
https://analysis.lastline.com

Lastline Analyst APl Documentation, Release 2.0

File: analysis_apiclient.py

Definition: analysis.submit_file(self, file_stream, download_ip=None, download_
—port=None, download_url=None, download_host=None, download_path=None, download_
—agent=None, download_referer=None, download_request=None, full_report_score=None,
—bypass_cache=False, delete_after_analysis=False, backend=None, raw=False,_
—verify=True)

Docstring:

Submit a file by uploading it.

For return values and error codes please
see :py:meth: malscape.api.views.analysis.submit_file" .

If there is an error and “raw 1is not set,
a :py:class: AnalysisAPIError exception will be raised.

:param file_stream: file-like object containing
the file to upload.

:param download_ip: ASCII dotted-gquad representation of the IP address
from which the file has been downloaded

:param download_port: integer representation of the port number
from which the file has been downloaded

:param download_url: DEPRECATED! replaced by the download_host
and download_path parameters

:param download_host: host from which the submitted file
was originally downloaded, as a string of bytes (not unicode)

:param download_path: host path from which the submitted file
was originally downloaded, as a string of bytes (not unicode)

:param download_agent: HTTP user—-agent header that was used
when the submitted file was originally downloaded,
as a string of bytes (not unicode)

:param download_referer: HTTP referer header that was used
when the submitted file was originally downloaded,
as a string of bytes (not unicode)

:param download_request: full HTTP request with
which the submitted file was originally downloaded,
as a string of bytes (not unicode)

:param full_ report_score: if set, this value (between -1 and 101)
determines starting at which scores a full report is returned.
-1 and 101 indicate "never return full report";

0 indicates "return full report at all times"

:param bypass_cache: if True, the API will not serve a cached
result. NOTE: This requires special privileges. Further, this
only bypasses the MalScape caching and might still serve a
cached result from the analysis engine

:param delete_after_analysis: if True, the backend will delete the
file after analysis is done (and noone previously submitted
this file with this flag set)

:param backend: DEPRECATED! Don't use

:param verify: if False, disable SSL-certificate verification

:param raw: if True, return the raw JSON results of the API query

The same documentation is also available above.

Let’s see how we can submit a URL:

In [3]: r=analysis.submit_url ("http://www.google.com")

In [4]: r

148 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

Out[4]: {u'data': {u'task_uuid': u'ab553401f249f4c209541799c3ccede23'}, u'success': 1}

uuid=r["data"] ["task_uuid"]

We now have a UUID for the submitted analysis task. We can use this to request the results:

In [5]: result=analysis.get_result (uuid)
In [6]: result["data"]["score"]
Oout[6]: O

In [7]: import pprint
In [8]: pprint.pprint (result["data"]["report"])

{u'analysis': {u'artifacts': None,
u'et_results': None,
u'exploits': None,
u'network': {u'redirects': None,
u'requests': [{u'content_md5': u

—'6294aa8e1853ee626776e7c8c9%6££3b"',

u'content_shal': None,

u'content_type': u'text/html',

u'ip': None,

u'parent_url': u'USER_URL',

u'relation_type': u'6',

u'status': u'302"',

u'url': u'http://www.google.com/'},

{u'content_md5': u
—'d0d%9aabedl132ac09e529453b7e26b864",

u'content_shal': u
—'b680dabl114a88277cd7364dbdc06bac358falebs’,

u'content_type': u'text/html',

u'ip': u'74.125.224.191"',

u'parent_url': u'http://www.google.com/',

u'relation_type': u'4',

u'status': u'200',

u'url': u'http://www.google.co.uk/"'},

{u'content_md5': u
—'cceaecl808dedb7c9e7a0df5¢c213db74",

u'content_shal': u
—'d5c0854c026fdled9b15b32bae87dc73723cbdbe",

u'content_type': u'text/javascript',

u'ip': u'74.125.224.191",

u'parent_url': u'http://www.google.co.uk/"',

u'relation_type': u'l',

u'status': u'200',

u'url': u'http://www.google.co.uk/xjs/_/7Js/
—k=x7Js.hp.en_US.vpRAO7Px3nw.0/m=sb_he, pcc/rt=73/d=1/sv=1/
—rs=ATtRSTM2fR5rzErXQEgClenaRaSY3BLhMw'},

{u'content_md5': u
—'a0af21c60b0dddc27096d9294b7d5d8f ",

u'content_shal': u
—'88ael1a2683797b31dc07d7128d7a24a628bdf52e",

u'content_type': u'text/javascript',

u'ip': u'74.125.239.15",

u'parent_url': u'http://www.google.co.uk/"',

u'relation_type': u'l',

u'status': u'200"',

u'url': u'http://ssl.gstatic.com/gb/js/sem_

5.3. Analyst API Shell Example 149

Lastline Analyst APl Documentation, Release 2.0

u'plugins': None,
u'result': {u'analysis_ended': u'2013-07-09 04:44:51+0000",
u'classification': u'benign’',
u'detector': u'2.6"',
u'explanation': u'models:0.84:0.00:0.84:0.00:0.00"},
u'shellcodes': None,
u'signatures': None,
u'subject': {u'type': u'url',
u'url': u'http://www.google.com/"'},
u'threats': None},

The score is 0 since this is a benign site. The report contains more information.

Submitting an executable for analysis is similar, except that we can first check to see if the executable is already known
by submitting a hash:

In [21]: f=open('example.file')
In [22]: import hashlib
In [23]: md5=hashlib.md5 (f.read()) .hexdigest ()

In [24]: md5
Out[24]: '£19e59513a23e676495fa72bd97995£f2"

In [25]: analysis.submit_file_hash (md5=md5)
AnalysisAPIError Traceback (most recent call last)

<ipython console> in <module> ()

analysis_apiclient.py in submit_file_hash(self, md5, shal, download_url, download_
—request, download_referer, full_report_score, bypass_cache, raw)

215 purge_none (files)
216 purge_none (params)
-——> 217 return self._api_request (url, params, files=files, post=True, raw=raw)
218
219 def submit_file(self,

analysis_apiclient.py in _api_request (self, url, params, files, timeout, post, raw,
—requested_format)

423 response.raise_for_status/()
424 page = response.text

——> 425 return self._process_response_page (page, raw, requested_format)
426

427 def init_shell (banner) :

analysis_apiclient.py in _process_response_page (self, page, raw, requested_format)

362 else:
363 error_code = result.get('error_ code', None)

--> 364 raise AnalysisAPIError (result['error'], error_code)
365

366 class AnalysisClient (AnalysisClientBase) :

AnalysisAPIError: Analysis API error (101): No file found matching requested hash.

In this case, the hash was not previously known, so an exception is raised. We should instead submit the file:

150 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

In [26]: f.seek(0)

In [27]: analysis.submit_file (f)
Out[27]: {u'data': {u'task_uuid': u'1l483924fa75c440ab5493b1557ab57c5"}, u'success': 1}

5.4 Analyst API Shell Helpers

The API client module provides helper classes for submitting artifacts and waiting for analysis results:

In [28]: import analysis_apiclient
In [29]: helper = analysis_apiclient.SubmissionHelper (analysis)

In [30]: ts = helper.get_api_utc_timestamp ()

In [31]: result = helper.submit_url ('https://www.lastline.com/")
Submitting URL https://www.lastline.com/

In [32]: result.is_complete()
Out [32]: False

In [33]: helper.wait_for_completion_of_submission(result, ts)

Waiting for completion of 1/1 submissions

Waiting for completion of 1 submissions

Got result for task 86ab5fe607aaa4181867ed9%a7lbcab664

Got result for task 86ab5fe607aaa4l181867ed9%a7lbcab664: AnalysisTask,
—86ab5fe607aaad4181867ed%9a7lbcabb664 (score: 1): URL=https://www.lastline.com/
Done waiting for completion of 1 submissions

In [34]: result.is_complete()
Out [34]: True

In [35]: result.task_uuid
Out [35]: u'B8obabfeoc07aaad4181867ed%a77lbcabo64’

In [36]: result.score
Oout[36]: 1
In [37]: result = helper.submit_filename ('./myfile.exe')

In [38]: result.is_complete()
Out [38]: True

In [39]: result.score
Oout[39]: 95

In [40]: helper.wait_for_completion_of_submission(result, ts)
No need to wait for completion for any of 1 submissions

These helper classes also support submitting multiple artifacts at once:

In [41]: results = helper.submit_urls_and_wait_for_completion(['http://www.google.com
', 'https://www.lastline.com'])
Submitting 2 URLs

Submitting URL http://www.google.com

5.4. Analyst API Shell Helpers 151

Lastline Analyst APl Documentation, Release 2.0

Submitting URL https://www.lastline.com
Waiting for completion of 0/2 submissions
Done waiting for completion of 2 submissions

In [42]: results['https://www.lastline.com'].task_uuid
Out [42]: u'Oea874bab6acd4c58b374087cc0047ctb’

In [43]: results['https://www.lastline.com'].score
Out[43]: 1

In [44]: results = helper.submit_filenames_and_wait_for_completion (['./sample.exe',
—'"./hello.exe'], bypass_cache=True)

Submitting 2 files

Submitting file hello.exe (md5=ac8545103e85219d7££f98bcd5£f5al2ff, |
—shal=969£7183dc81leb7e95e47£06d640623bedf5ed9f)

Submitting file by hash failed: Analysis API error (101): No file found matching
—requested hash.

Submitting file sample.exe (md5=e7742a9e48739%ce3abb686c2cl1299690,
—shal=b58cd7d734£908deb93c0f52bec8437c3clb99ca)

Submitting file by hash failed: Analysis API error (101): No file found matching
—requested hash.

Waiting for completion of 2/2 submissions

[...]

Got result for task dfdelddce80b48488034bcaaf29%bcbab

Got result for task dfdelddce80b48488034bcaaf29bcbab: AnalysisTask,,
—dfdelddce80b48488034bcaaf29bcbab: MD5=ac8545103e85219d7££98bcd5f5al2ff, |
—SHA1=969f7183dc81eb7e95e47f06d640623bedf5ed9f, name=hello.exe

Waiting for completion of 1 submissions

Got result for task b73525lecd44475cad34fb6a20ald4ct

Got result for task b73525lecd44475cad34fb6a20ald4cf: AnalysisTask,,
—p735251ecd44475cad34fbbaz20ald4ct (score: 19): MD5=e7742a9e48739ce3abb686c2c1299690,
—SHA1=b58cd7d734£f908deb93c0£f52bec8437c3clb99ca, name=sample.exe

Done waiting for completion of 2 submissions

In [45]: results['./sample.exe'].task_uuid
Out [45]: u'b735251ecd44475cad34fbbaz0ald4dct’

In [46]: results['./sample.exe'].score
Out[46]: 19

Furthermore, the API shell also provides helper classes for accessing analysis data, such as the primary analysis
subject. To download the file using the task UUID (assuming it is available in the system), use:

In [1]: import analysis_apiclient
In [2]: helper = analysis_apiclient.QueryHelper (analysis)

In [3]: file_stream = helper.download_analysis_subject_file (task_uuid=<task-UUID>)
In [4]: if file_stream:
print 'Download successful, downloaded file has SHALl',
. print analysis_apiclient.hash_stream(file_stream, 'shal')
Download successful, downloaded file has SHAl <analysis-subject-SHAl>

Similarly, if the file hash of the analysis subject is known, the file can be downloaded using:

In [1]: import analysis_apiclient
In [2]: helper = analysis_apiclient.QueryHelper (analysis)

152 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

In [3]: file_stream = helper.download_analysis_subject_by_file_hash (shal=<shal>)
In [4]: with open (<output-filename>, 'wb') as outf:
outf.write(file_stream.read())

Note that these helper classes are automatically instantiated and provided to the user when using the API client shell
analysis_apiclient_shell.py:

$ python analysis_apiclient_shell.py <key> <token>

In [1]: result = submission_helper.submit_url ('https://www.lastline.com/")
In [2]: file_stream = query_helper.download_analysis_subject_by_file_hash (md5=<md5>)

5.5 Application Bundle Module

The Lastline Analyst API allows detailed customization of the analysis environment via so-called application bundles.
These bundles consist of one or more artifacts plus analysis metadata that describes the analysis environment and how
to invoke the analysis subject.

The analysis system currently supports three types of bundles:
* Program bundles allow specifying the exact command line, with which the analysis is invoked.
» Web replay bundles allow replaying captured network traffic during the analysis of a web subject.

* Document bundles allow customizing the way Microsoft Office opens a document and allows providing a set of
password candidates. While the module allows creating this type of bundles manually, it is more convenient to
set the password_candidates parameter as part of the file submission in a call to submit_file () to achieve
the same result.

A Python module for creating bundles is available for download as ZIP archive and contains files
e _ init__.py
* bundle.py
* helper.py

which can be used via the command-line tool lastline_appbundle_create.py.

5.5.1 Specifying custom command line arguments

The API allows a user to specify command line arguments or to load/invoke an analysis subject through another
application. This can be achieved using application bundles.

To create a simple application bundle, use the command-line tool:

$ python lastline_appbundle_create.py \
-a /path/to/subject 'C:\virtual\path\to\subject.exe' \
—— 'C:\virtual\path\to\subject.exe' argl arg2

5.5. Application Bundle Module 153

https://analysis.lastline.com/analysis/api-docs/llappbundle/llappbundle.zip
https://analysis.lastline.com/analysis/api-docs/llappbundle/__init__.py
https://analysis.lastline.com/analysis/api-docs/llappbundle/bundle.py
https://analysis.lastline.com/analysis/api-docs/llappbundle/helper.py
https://analysis.lastline.com/analysis/api-docs/examples/lastline_appbundle_create.py

Lastline Analyst APl Documentation, Release 2.0

The command-line tool provides the same options as the Python helper module, but the latter can be used directly to
automate application bundle creation when using the Python API client:

import logging
import llappbundle.helper

Create a logger object to be used by the appbundle creator
log = logging.getLogger ()

In all examples, the output of the create_appbundle function is a
binary stream like object, similar to what you get when using the 'open' function
filenames must be utf-8 encodable str type.

Example 1: Launch an application in a specific folder

#

#

To launch a program with a specific working directory, provide the

% "files" parameter (providing a dictionary), mapping virtual filenames (filenames

inside the analysis system) to the file-content (a local file-stream),

+ "main_subject" parameter to specify the virtual filename of the main analysis

subject (one of the elements in the "files" dictionary), and the

% "run_directory" parameter (optional) to specify the working directory in which

to launch the analysis.

examplel = llappbundle.helper.create_appbundle (
files={r"C:\virtual\path\to\subject.exe": open("/path/to/subject", 'rb')},
main_subject=r"C:\virtual\path\to\subject.exe",
run_directory=r"C:\path\to\run\in",
logger=1o0g)

Example 2: Launch an application with specific command-line arguments.

To launch a program with specific arguments, provide the

* "files" parameter (providing a dictionary), mapping virtual filenames (filenames
inside the analysis system) to the file-content (a local file-stream),
"main_subject" parameter to specify the virtual filename of the main analysis
subject (one of the elements in the "files" dictionary),

* "run_directory" parameter (optional) to specify the working directory in which
to launch the analysis,

* "executable" parameter, pointing to the main_subject, and the

S o R R W R R W R R %
*

* "arguments" parameter specifying the arguments to pass to the analysis subject.
example2 = llappbundle.helper.create_appbundle (
files={r"C:\virtual\path\to\subject.exe": open("/path/to/subject", 'rb')},
main_subject=r"C:\virtual\path\to\subject.exe",
executable=r"C:\virtual\path\to\subject.exe",

arguments=["--argl", "--arg2"],

logger=1o0g)

Example 3: Start the anaylsis subject via the command shell (cmd.exe).

To launch a program via cmd.exe, provide the

x "files" parameter (providing a dictionary), mapping virtual filenames (filenames
inside the analysis system) to the file-content (a local file-stream),
"main_subject" parameter to specify the virtual filename of the main analysis
subject (one of the elements in the "files" dictionary),

* "run_directory" parameter (optional) to specify the working directory in which
to launch the analysis,

* "executable" parameter pointing to cmd.exe, and the

* "arguments" parameter specifying the arguments to pass to executable ("cmd.exe").
example3 = llappbundle.helper.create_appbundle (
files={r"C:\virtual\path\to\subject.exe": open("/path/to/subject", 'rb')},

S o R H W R R W R R K
*

154 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

main_subject=r"C:\virtual\path\to\subject.exe",
executable=r"C:\Windows\system32\cmd.exe",

arguments=["/c", "C:\\virtuall\path\\to\\subject.exe", "arg"],
logger=1og)

Example 4: Invoke a specific function inside a DLL (via rundll32.exe).
#
To launch a program via rundll32.exe, provide the
% "files" parameter (providing a dictionary), mapping virtual filenames (filenames
inside the analysis system) to the file-content (a local file-stream),
* "main_subject" parameter to specify the virtual filename of the main analysis
subject (one of the elements in the "files" dictionary),
* "executable" parameter, and use "rundll32.exe" to indicate that this is the
program to launch, and the
* "arguments" parameter specifying the command-line for rundll32.exe, providing
the function to invoke/use as entrypoint ("functionl") as well as the arguments
to pass to the function ("argl" and "arg2").
exampled4 = llappbundle.helper.create_appbundle (
files={r"C:\virtuall\path\subject.dll": open("/path/to/subject", 'rb')},
main_subject=r"C:\virtual\path\subject.dll",
executable=r"C:\Windows\system32\rundl1l32.exe",
arguments=[r"C:\virtual\path\subject.dll, functionl", "argl", "arg2"],
logger=1lo9g)

S H W HH W W H H

Example 5: Provide additional files

#

#

To launch a program and provide an additional file as parameter, provide the

x "files" parameter (providing a dictionary), mapping virtual filenames (filenames
inside the analysis system) to the file-content (a local file-stream),

+ "main_subject" parameter to specify the virtual filename of the main analysis

subject (one of the elements in the "files" dictionary),

» "executable" parameter. As above, the template could be used but it can also be
defined as full path since we specified it with xfilenamex*

x "arguments" parameter specifying the arguments to pass to the analysis subject,
and the

% "additional_ files" parameter specifying additional files that should be copied
to the analysis environment

example5 = llappbundle.helper.create_appbundle (

files={
r"C:\virtual\path\to\subject.exe": open("/path/to/subject", 'rb'"),
r"C:\somewhere\else.ini": open("/path/to/config", 'rb')

},

executable=r"C:\virtual\path\to\subject.exe",
main_subject=r"C:\virtual\path\to\subject.exe",
arguments=["--read", "C:\\somewhere\\else.ini"],
logger=1o0g)

Example 6: A WScript file set as main subject launching it with wscript.exe

In this example we have the following set up:

* "files" parameter (providing a dictionary), mapping virtual filenames (filenames
inside the analysis system) to the file-content (a local file-stream),
"test.vbs" is the VBS file we want to analyze

* "executable" is the name of the executable that will launch the main subject

* "main_subject" parameter to specify the virtual filename of the main analysis
subject (one of the elements in the "files" dictionary),

* "arguments" is the arguments that will be used when launching the executable

in the system

S oH R HH R TR R W R R K
*

5.5. Application Bundle Module 155

Lastline Analyst APl Documentation, Release 2.0

example6 = llappbundle.helper.create_appbundle (
files={r'test.vbs': open('test.vbs', 'r')},
main_subject=r'test.vbs',
executable=r'C:\Windows\system32\wscript.exe',
arguments=[r'test.vbs'],

-

Example 7: Setting environment variables in the system that will run the analysis
of the bundle

In this example we have the following set up:

* "files" parameter (providing a dictionary), mapping virtual filenames (filenames
inside the analysis system) to the file-content (a local file-stream),
"test.vbs" is the VBS file we want to analyze

* "executable" is the name of the executable that will launch the main subject
* "main_subject" parameter to specify the virtual filename of the main analysis
subject (one of the elements in the "files" dictionary),

* "arguments" is the arguments that will be used when launching the executable
in the system

* "registry_values" is a list with registry values to set in the environment
before running the analysis.

reg_to_set = llappbundle.RegistryValue (

path=r'HKEY_CURRENT_USER\Environment',

name="Lastline',

type='REG_SZ',

value='"test'

S R FHR H R FHR H R FH H R R H %
*

)
example7 = llappbundle.helper.create_appbundle (
files={
r"test.vbs": open('test.vbs', 'r')
}I
main_subject=r'test.vbs',
executable=r'C:\Windows\system32\wscript.exe',
arguments=[r'test.vbs'],
registry_values=[reg_to_set],

—

Example 8: Executing command in the system that will run the analysis of the
bundle after some additional commands

In this example we have the following set up:

* "files" parameter (providing a dictionary), mapping virtual filenames (filenames
inside the analysis system) to the file-content (a local file-stream),
"test.vbs" is the VBS file we want to analyze

* "executable" is the name of the executable that will launch the main subject
* "main_subject" parameter to specify the virtual filename of the main analysis
subject (one of the elements in the "files" dictionary),

* "arguments" is the arguments that will be used when launching the executable
in the system

* "preparation_commands" is a list with commands to run in the environment
before running the analysis.

set_date = llappbundle.Command (

filename=None,

executable="'C:\windows\system32\cmd.exe"',

parameters=['/c', 'date', '11-19-2019'],

run_directory=r'C:\Windows"

S o FR H R FR R R R H R R R %
*

)
example8 = llappbundle.helper.create_appbundle (

156 Chapter 5. Sample API Clients

Lastline Analyst APl Documentation, Release 2.0

files={

r"test.vbs": open('test.vbs', 'r')
}I
main_subject=r'test.vbs',
executable=r'C:\Windows\system32\wscript.exe',
arguments=[r'test.vbs'],
preparation_commands=[set_date],

5.5.2 Replaying traffic of pcaps for web analysis runs

Web replay bundles combine a traffic capture file (pcap) and a web subject, i.e. an URL or a HTML/JavaScript file.
When a web replay bundle is submitted, the analysis engine requests the analysis subject specified in the bundle; if the
subject references any external resource (e.g., scripts, stylesheets, or images), they are extracted from the capture file
(instead of fetching them from their original location). This allows one to “replay” a web session that was recorded in
a pcap file. Notice that web replay bundles are handled only by the instrumented browser engine.

To create a web replay bundle, use the python helper module:

import logging
import llappbundle.helper

Create a logger object to be used by the appbundle creator
log = logging.getLogger ()

In all examples, the output of the create_web_replay* functions 1is a
binary stream like object, similar to what you get when using the 'open' function

Example 1: Create an appbundle with URL subject

#
#
To create an web replay appbundle, provide the
% "files" parameter (providing a dictionary), mapping virtual filenames (filenames,_
—inside the
analysis system) to the file-content (a local file-stream),
% "pcap" parameter to specify the virtual filename of the pcap (one of the elements,
—1in the
"files" dictionary)
+ "main_subject" parameter to specify the subject URL as a string
examplel = llappbundle.helper.create_web_replay_bundle_with_url (
files={r"traffic.pcap": open("/path/to/pcap", "rb")},
pcap=r"traffic.pcap",
main_subject=r"http://example.comn",
logger=1og)

Example 2: Create an appbundle with a file subject

#

To create an web replay appbundle, provide the

x "files" parameter (providing a dictionary), mapping virtual filenames (filenames,_
—inside the

analysis system) to the file-content (a local file-stream),

x "pcap" parameter to specify the virtual filename of the pcap (one of the elements,
—in the

"files" dictionary)

x "main_subject" parameter to specify the virtual filename of the main analysis,,
—subject (one

of the elements in the "files" dictionary),

5.5. Application Bundle Module 157

Lastline Analyst APl Documentation, Release 2.0

example2 = llappbundle.helper.create_web_replay_bundle_with_file(

files={
r"traffic.pcap": open("/path/to/pcap",

"Ib") ,

r"subject.html": open(r"/path/to/subject", "rb")},

pcap="traffic.pcap",
main_subject="subject.html",
logger=10g9)

158

Chapter 5. Sample API Clients

PYTHON MODULE INDEX

llapi_client.analysis_apiclient, 131

m

malscape_service.api.views.analysis, |
malscape_service.api.views.authentication

16

159

Lastline Analyst APl Documentation, Release 2.0

160 Python Module Index

A

ANALYSIS_API_AUTHENTICATION_REQUIRED (in
module malscape_service.api.views.analysis),
46
ANALYSIS_API_CHILD_TASK_CHAIN_TOO_DEEP
(in module malscape_service.api.views.analysis),
46
ANALYSIS_API_DATA_NO_LONGER_AVAILABLE
(in module malscape_service.api.views.analysis),
46
ANALYSIS_API_FILE_EXTRACTION_FAILED (in
module malscape_service.api.views.analysis),
46
ANALYSIS_API_FILE_NOT_AVAILABLE (in module
malscape_service.api.views.analysis), 45
ANALYSIS_API_FILE_TOO_LARGE (in module
malscape_service.api.views.analysis), 46
ANALYSIS_API_FILE_UPLOAD_REQUIRED (in
module malscape_service.api.views.analysis),
45
ANALYSIS_API_INVALID_ARTIFACT_UUID (in
module malscape_service.api.views.analysis),
46
ANALYSIS_API_INVALID_CREDENTIALS (in mod-
ule malscape_service.api.views.analysis), 45
ANALYSIS_API_INVALID_D_METADATA (in module
malscape_service.api.views.analysis), 46
ANALYSIS_API_INVALID_FILE_TYPE (in module
malscape_service.api.views.analysis), 46
ANALYSIS_API_INVALID_HASH_ALGORITHM (in
module malscape_service.api.views.analysis),
46
ANALYSIS_API_INVALID_REPORT_VERSION (in
module malscape_service.api.views.analysis),
46
ANALYSIS_API_INVALID_URL (in module
malscape_service.api.views.analysis), 46
ANALYSIS_API_INVALID_UUID (in module
malscape_service.api.views.analysis), 45
ANALYSIS_API_NO_IOC_EXTRACTABLE (in mod-
ule malscape_service.api.views.analysis), 46
ANALYSIS_API_NO_RESULT_FOUND (in module

INDEX

malscape_service.api.views.analysis), 46
ANALYSIS_API_PERMISSION_DENIED (in module
malscape_service.api.views.analysis), 46
ANALYSIS_API_SUBMISSION_LIMIT_EXCEEDED
(in module malscape_service.api.views.analysis),
46
ANALYSIS_API_TEMPORARILY_UNAVAILABLE
(in module malscape_service.api.views.analysis),
46
AnalysisAPIError (class
llapi_client.analysis_apiclient), 146
AnalysisClient (class in llapi_client.analysis_apiclient),

in

142

AnalysisClientBase (class in
llapi_client.analysis_apiclient), 132

CommunicationError (class in
llapi_client.analysis_apiclient), 146

create_ioc_from_result() (in module
malscape_service.api.views.analysis), 39

E

export_report() (in module
malscape_service.api.views.analysis), 41

get_analysis_tags() (in module
malscape_service.api.views.analysis), 40

get_api_utc_timestamp() (in module
malscape_service.api.views.analysis), 39

get_child_tasks_recursively() (in module
malscape_service.api.views.analysis), 41

get_completed() (in module

malscape_service.api.views.analysis), 28

get_completed() (llapi_client.analysis_apiclient. AnalysisClientBase

method), 140
get_completed_exported_reports() (in module

malscape_service.api.views.analysis), 42
get_completed_with_metadata() (in module

malscape_service.api.views.analysis), 29

161

Lastline Analyst APl Documentation, Release 2.0

get_completed_with_metadata() M
(lapi_client.analysis_apiclient. AnalysisClientBasgnalscape_service.api.views.analysis (module), 1, 16, 153
method), 141 malscape_service.api.views.authentication (module), 15,
get_exported_report() (in module 16
malscape_service.api.views.analysis), 43
get_ioc_metadata() (in module P
) malscape_serv1ce.ap1.V.lews.analyms), 37 ping() (in module malscape_service.api.views.authentication),
get_ioc_report() (in module 45
malscape_service.api.views.analysis), 38
get_network_iocs() (in module Q
d.malscape_service.api..views.analysis), 36 wul query_file_hash() (in module
get_pen lng(l) i .(m. vsi 3?10 uie malscape_service.api.views.analysis), 34
malscape_service.api.views.ana ysis), ° query._task_artifact() (in module
get_progress() (in module

. A . malscape_service.api.views.analysis), 36
malscape_service.api.views.analysis), 32

get_progress() (llapi_client.analysis_apiclient.AnalysisClien@ase

method), 141 o .
get_report_activities() (in module SumeSSIOan.:lpe.r . '(Ckiss in

malscape_service.api.views.analysis), 25 ~ llapi_client.analysis_apiclient), 142
get_report_artifact() (in module Submit_fileO (in module

malscape_service.api.views.analysis), 17

malscape_service.api.views.analysis), 27) R . . .
get_report_artifact() (llapi_client.analysis_apiclient.Analysigéli)fémB@s%O (llapi_client.analysis_apiclient. AnalysisClientBase

method), 140 method), 132
get_result() (in module submit_file_hash() (llapi_client.analysis_apiclient. AnalysisClientBase

malscape_service.api.views.analysis), 23 method), 134

get_result() (llapi_client.analysis_apiclient. AnalysisClientB gygmit_ﬁle_stream() (llapi_client.analysis_apiclient.SubmissionHelper
- N - method), 142

method), 138 _ . .
get_result_activities() (in module Submit_file_streams_and_wait_for_completion()
- ;nalscape service.api.views.analysis), 24 (llapi_client.analysis_apiclient.SubmissionHelper
get_result_artifact() (in module method), 144

malscape_service.api.views.analysis), 26 submit_filename() (llapi_client.analysis_apiclient.SubmissionHelper

get_result_artifact() (llapi_client.analysis_apiclient.AnalysisClien_tBas@ethOd)’ 143 . .
method), 139 submit_filenames_and_wait_for_completion()

get_result_summary() (Ilapi_client.analysis_apiclient. AnalysisClientB4iapiclient.analysis_apiclient.SubmissionHelper
method), 139 method), 144
, submit_url() (in module

get_results() (in module . o .
malscape_service.api.views.analysis), 22) malscap e_s.erv 1ce.ap1.Ylews..ar.lalysm), 20_)
get_task_metadata() (in module submit_url() (lapi_client.analysis_apiclient. AnalysisClientBase

method), 137
submit_url() (llapi_client.analysis_apiclient.SubmissionHelper
| method), 143
submit_urls_and_wait_for_completion()

malscape_service.api.views.analysis), 33

is_blocked_file_hash() : .. (in i module (llapi_client.analysis_apiclient.SubmissionHelper
malscape_service.api.views.analysis), 35 method), 145

is_risky_analysis_artifact() (in module ’
malscape_service.api.views.analysis), 44 W

is_risky_analysis_artifact() . . - . _— .
(llapi_client.analysis_apiclient Ana]ysiSClientBasg/alt_for_completlon() (llapi_client.analysis_apiclient.SubmissionHelper
methc:d) 141 - method), 145
’ wait_for_completion_of_submission()
L (llapi_client.analysis_apiclient.SubmissionHelper

labi cli lysi i qule). 131 method), 144
api_client.analysis_apiclient (module), 1- WaitResultTimeout (class in

login() (in module malscape_service.api.views.authentication), Ilapi_client.analysis_apiclient), 146
44 — . — >

162 Index

	Overview
	Supported Artifacts
	Getting Started
	API Concepts
	Workflow
	Handling of Containers

	API Reference
	Authentication
	Response Format
	Methods
	Error Codes
	Submission Metadata
	Web-Portal Integration

	Analysis Results
	Analysis Report Format
	Report Format
	Report Format ll-int-win
	Report Format ll-int-osx
	Report Format ll-win-timeline-based
	PE Stats information
	PE Resource Stats information
	Report Format ll-osx-timeline-based
	Report Format ll-int-win-doc
	Report Format ll-int-apk
	Report Format ll-int-archive
	Report Format ll-web
	Report Format ll-static
	Report Format ll-ioc-json
	Report Format ll-pcap
	Report Format ll-flash
	Report Format ll-doc
	Report Descriptions

	Child Tasks
	Sample API Clients
	Analyst API client
	Analysis Client Shell
	Analyst API Shell Example
	Analyst API Shell Helpers
	Application Bundle Module

	Python Module Index
	Index

